反射式光譜干涉技術應用於先進半導體

蝕刻製程結構均勻性量測

謝文淇/顧逸霞

由於電晶體關鍵尺寸的逐年縮小已面臨物理極限,因此全球積極朝向提高單位面積立體堆疊 元件數量的設計方向發展,開發3DIC封裝製程成為延續摩爾定律(Moore's Law)最重要的方法。 隨著量產製造過程產能及良率要求增加,使得開發非破壞性、快速、可即時回饋、優化製程的量 測方法至關重要。本研究研發反射式光譜干涉量測技術,可整合在晶圓製程做為線上即時量測工 具。實驗證實應用在高深寬比蝕刻製程的矽通孔(TSV, Through Silicon Via)結構深度量測,具備 單點量測及分析時間 < 0.5 s等優勢,並根據量測模組的即時回饋數據,給予製程端調整反應性離 子蝕刻條件參數,可逐步有效地提升整片晶圓蝕刻深度均匀度 ≤ 2.47%。

1. 前言

(1) 研究緣起

歷年以來,摩爾定律的預測推動了半導 體技術,在晶片的製造和性能上都得到極大 的改善與發展,進而驅動了電子業相關產品 蓬勃發展。但隨著電晶體製造尺寸微縮到一 定程度時,材料的物理和化學性能將會達到 極限,並且面臨了散熱不易、功耗增加以及 訊號傳輸速度受限等問題。 先進封裝技術提供了一種解決方案,這 項新興技術是將多個晶片以立體堆疊的設計 方式,來提高單位面積的元件數量,並已成 為延續摩爾定律最重要的方法。而製程所採 用的矽通孔技術是促使金屬導線縮短,提升 電子訊號傳輸速度及效能的一個關鍵技術。 圖一為台積電第五代CoWoS封裝製程示意 圖,即是採用全新TSV製程技術,透過異質 整合提升高速運算及省電效能等優點。

圖二 CoWoS 封裝製程示意圖 (Source: tsmc 2022)

(2) 研究目的

由於TSV製程技術是實現三維晶圓封裝 和提升積體電路密度的重要技術,其製程良 率是影響終端元件產品性能的關鍵。然而, TSV製程的難度在於其高深寬比結構,通孔 深度與直徑比 ≥ 10:1,所面臨的蝕刻技術與 量測挑戰。因此本研究研發一種非破壞性、 快速的光學量測方法,可與製程機台整合, 即時將TSV結構的量測資訊回饋給蝕刻製程 機台,以進行參數的調整,最終達到優化 TSV製程、提升良率的目的。

本研究運用雙光路干涉原理及光學模組 優化設計,開發反射式光譜干涉量測模組, 著重在高深寬比(10:1)、高密度(孔徑:孔距 =1:1)、小孔徑(≤ 5 µm)的TSV製程量測研究。 包含整片晶圓所分布的TSV深度的均匀性、 孔徑大小的差異以及晶圓翹曲度等。

2. 測試樣本與實驗模組架構

(1) TSV 樣本說明

本研究樣本包含不同孔徑的TSV樣本:

- 圓孔TSV陣列: 孔徑尺寸 (CD, critical dimension) 為5 μm、間距 (pitch) 為 10 μm和深寬比 (AR, aspect ratio) 為10
- 方孔TSV陣列: 孔徑尺寸為5 μm、間距 為10 μm和深寬比為10
- (2) 實驗模組架構

本研究採用商用薄膜量測機台進行TSV 結構深度量測,其組成有寬頻鹵素燈、低倍 率物鏡及光譜儀等。光經過分光鏡及物鏡後 聚焦到TSV樣本上,隨後光譜儀擷取干涉光 譜,再由DFT (discrete Fourier transform) 演算法分析TSV樣本深度,目前測試結果單 點量測時間< 0.5 s。本研究選擇低倍率(4x) 和0.1低數值孔徑的顯微物鏡,以能夠讓入 射光接近於垂直方向入射TSV樣本,並盡可 能獲得最多來自於高深寬比TSV結構孔底和 表面的干涉訊號。TSV樣本所取得的干涉光 譜,通常在量測波長範圍內會呈現規律性的 振幅振盪。

3. 研究方法

(1) 研究原理

(1.1) 光的干涉

光是一種電磁波,其能量是以波動的形

式傳播,帶有特定的振幅與相位。當兩個或 多個光波在空間中作用時,會產生振幅與相 位疊加,這種現象被稱爲干涉。根據電磁波 理論,總電場是由這些波的向量電場疊加後 的總和。在方程式(1)中,u代表兩個波向量 電場的總和, U_1 和 U_2 分別代表電場分量的 振幅, φ_1 和 φ_2 則是代表其各別的相位。透 過方程式(2),可以得到光的總干涉强度 I是 兩道光的各別反射光强度和,再加上一個跟 相位差 $\Delta \varphi$ 相關的干涉項。

$$u = u_{1} + u_{2} = U_{1}e^{i\varphi_{1}} + U_{2}e^{i\varphi_{2}}$$
(1)

$$I = |u|^{2} = |u_{1} + u_{2}|^{2} = U_{1}^{2} + U_{2}^{2} + 2U_{1}U_{2}\cos(\varphi_{1} - \varphi_{2})$$
$$= I_{1} + I_{2} + 2\sqrt{I_{1}I_{2}}\cos\Delta\varphi$$
(2)

(1.2) 菲涅耳方程式 (Fresnel Equation)

當光從一種介質入射到另一種介質時, 在這兩種介質的交界處 (interface) 會發生反 射和折射。此方程式描述了電磁波的入射、 反射和折射時電磁場的大小關係。由於偏振 態可分成兩個正交線偏振波的組合,分別是 入射光與入射平面(plane of incidence) 垂直 的s偏振波以及入射光與入射平面平行的p偏 振波。因此,在s偏振波以及p偏振波的電場 下會有各自的反射係數與穿透係數,分別是:

$$r_{s} = \frac{E_{r}}{E_{i}} = \frac{n_{1}\cos\theta_{i} - n_{2}\cos\theta_{t}}{n_{1}\cos\theta_{i} + n_{2}\cos\theta_{t}}$$
(3)

$$t_s = \frac{E_t}{E_i} = \frac{2n_1 \cos \theta_i}{n_1 \cos \theta_i + n_2 \cos \theta_t} \tag{4}$$

$$r_p = \frac{E_r}{E_i} = \frac{n_2 \cos \theta_i - n_1 \cos \theta_t}{n_2 \cos \theta_i + n_1 \cos \theta_t}$$
(5)

(6)

圖三 入射面與入射、折射、反射光在空間中之關係

(2) 理論模型

(2.1) TSV結構的干涉理論模型

圖四 (a) 顯示光線垂直入射至TSV的表面及底部的光路示意圖。本研究使用一個直徑為25 µm的光斑照射在CD為5 µm的週期性TSV結構上。對於高密度的週期性TSV陣列結構, 矽晶圓表面的照射區域與照射到的CD之間的比例是維持固定不變的,僅取決於開口形狀和間距。假設光線照射在矽表面和通孔底部(即CD)的面積分別為係數1 – α 和 α · E_0 是入射矽表面和通孔底部的電場。

d 為TSV通孔深度、而λ是波長。方程式(7) 描述了反射光强度 *Ī* 是矽表面和通孔底部反 射兩道光的總和。根據Fresnel方程式、光 線從空氣入射矽表面反射時會發生180°的相 位偏移、其電場反射率會受到反射係數 r_{si}^{+} 的影響。經過乘以反射係數後的反射光强度 如方程式(8)所示^[1]。**圖五**(b)展示了TSV深 度為50 μm及50.5 μm時的模擬光譜、可看 出兩者具有極明顯的干涉光譜特徵差異、這 是 由 於 方 程 式 (8) 中 的 餘 弦 干 涉 項 $\cos \left[2\pi \left(\frac{2d}{\lambda}\right)\right]$ 、與深度*d*具有關聯性。

$$\bar{I} = Const \left| \alpha E_0^2 + (1 - \alpha) E_0^2 + 2\sqrt{\alpha (1 - \alpha)} E_0^2 \cos \left[2\pi \left(\frac{2d}{\lambda} \right) \right] \right|$$
(7)

$$\bar{I} = Const \left| \alpha (r_{Si}^+ E_0)^2 + (1 - \alpha) (r_{Si}^+ E_0)^2 + 2\sqrt{\alpha (1 - \alpha)} (r_{Si}^+ E_0)^2 \cos \left[2\pi \left(\frac{2d}{\lambda} \right) \right] \right|$$
(8)

圖六 (a)光線垂直入射高深寬比TSV之光路示意圖;

(b)TSV深度為50 µm及50.5 µm之干涉光譜圖

(2.2) 離散傅立葉轉換分析演算法

離散傅立葉轉換是一種訊號分析的數學 工具,適用於處理離散訊號,因此應用它做 為分析通孔深度的演算法。但由於實驗上所 收集到的原始光譜是時域上的離散數據點, 須將原始光譜數據先進行重整處理,以符合 DFT將時域的光譜訊號轉換成頻域的光譜訊號所需條件,進而得到TSV深度分析結果。 假設光譜儀的接收波長範圍是 λ_{min} 和 λ_{max} , 當 λ_{min} 和 λ_{max} 的波長間隔剛好符合一個完 整波形時,可以推算出DFT可量測解析的最 小深度 d_{min} (式9)。

$$d_{min} = \frac{1}{2n\left(\frac{1}{\lambda_{min}} - \frac{1}{\lambda_{max}}\right)} \tag{9}$$

由於光譜儀有N 個像素 $\cdot \lambda_{min}$ 和 λ_{max} 的波長間隔最多可量測解析N/2個完整波形 \cdot

因此可推算的最大量測深度 dmax 為

$$d_{max} = \frac{N/2}{2n\left(\frac{1}{\lambda_{min}} - \frac{1}{\lambda_{max}}\right)} = \frac{N}{2} d_{min}$$
(10)

本研究使用的光譜儀所取樣的波長範圍 是430 nm~820 nm·取樣個數*N*=1024。 根據方程式(9)和(10)·可估算出 *d_{min}*和 *d_{max}*分別是0.45 µm和231.5 µm·這也説明 了量測模組的TSV深度量測範圍。DFT分析 演算法的具體執行流程如**圖七**所示。先將根 據波長(λ)分布所表示的光譜轉換成以波數 (v=1/λ)分布表示的光譜,並使用內插法將 數據的個數補足到2的冪次方個,數據間隔 為Δv。

$$\Delta v = \frac{v_{max} - v_{min}}{N} \tag{11}$$

接著引入參數 $d_{DFT} = n d$ 作爲TSV深度, 其中介質折射率n為1。透過DFT運算,可從 方程式(12)獲得一系列的複數傅立葉係數 $C_1 cdot C_2 cdot C_3 cdot \dots cdot cdot$

$$R(t) = C_0 + \sum_{j=1}^{N-1} C_j \exp[i(j\Delta \nu \cdot d_{DFT})]$$
(12)

$$d = \frac{d_{DFT}}{n} = \frac{m}{2 (v_{max} - v_{min})}$$
(13)

錯誤! 找不到參照來源。 DFT分析演算流程圖

4. 結果與討論

本研究採用的次TSV晶圓樣本,是使用 AMAT Centura Etch反應式離子蝕刻 (RIE) 機型製作,具備內、外雙線圈電漿源 (dual coils plasma source)。本實驗的量測點從晶 圓最靠近下緣處die 1橫跨中心區域至晶圓上 緣處的die 13。Ra表示外/內線圈的電流比 (outer/inner coil current ratio)。Ra最初的 設定值為1,這表示内、外線圈施加相同的 電流。圖八為TSV深度量測結果,可以觀察 到從晶圓上的TSV深度分布曲線呈現外側較 深、中間較淺的現象,圓孔TSV陣列的均匀 度 (uniformity)為5.18%;而方孔TSV陣列 的均匀度則是6.49%,均勻度數據整理在表 一。TSV深度的均匀度定義為 $Uniformity \pm 100\% = \frac{depth_{max} - depth_{min}}{2 \ depth_{average}} \times 100\%$

由於在蝕刻製程中,諸多參數對蝕刻結 果產生關鍵影響,包括溫度、壓力、反應物 流速、電流比等。這裡推測即使外線圈和内 線圈施加相同電流,但其所產生的電漿密度 分布,與晶圓蝕刻速率並不一致,因此造成 晶圓外側的TSV深度會較晶圓中心處深。之 前的研究指出,化學勢的不連續性會在晶圓 上產生濃度梯度。由於在晶圓中心相對於邊 緣反應物消耗和副產物排放速率的變化不一 樣,或是蝕刻腔體內溫度差異都有可能引起 濃度梯度,最後導致晶圓邊緣的TSV深度較 深^[3]。

(14)

受到目前所使用的蝕刻機型其可調參數 限制,選擇從最可能影響蝕刻深度均勻性的 關鍵參數Ra,即外/內線圈電流比,進行優 化調整實驗。在接下來的實驗研究中,將會 深入探討不同Ra對蝕刻TSV深度、孔徑大小、 晶圓翹曲度等的影響。

圖九 TSV晶圓(12") die-to-die蝕刻深度分布圖(Ra=1): (a)量測點在晶圓上的位置; (b)孔徑5 μm圓孔TSV; (c)孔徑5 μm方孔TSV

爲了改善TSV蝕刻深度間的均勻性,在 隨後的實驗嘗試逐次調降Ra值,由0.92、 0.85到0.78,並即時量測觀察Ra對於TSV深 度的影響。根據本研究快速量測分析的結果 顯示,透過降低Ra值,即增加內線圈的電流 量可調整雙線圈所產生的電漿離子密度分布, 大幅的補償了溫度、壓力、反應物流速不均 等因素對蝕刻深度的綜合影響如圖十所示, 進而改善整片晶圓TSV蝕刻深度的均匀性。 從表一可以得出Ra值從1調整到0.92、0.85、 0.78、圓孔TSV的均匀度從5.18%一路提升 至2.47%;而方孔TSV的均匀度也從原本的 6.49%提升至2.8%。另外可以從圖十一觀 察到無論是圓孔TSV或是方孔TSV、TSV深 度最大值都落在晶圓die 13邊緣區域,判斷 這是因爲在蝕刻腔體内的渦輪分子幫浦 (turbo pump)抽氣口,剛好位於晶圓die 13 這一側,因此造成了反應物和副產物的抽除 速率在該側較大,這也間接增加此側蝕刻速 率,進而增加TSV的蝕刻深度。

圖十二 不同參數Ra所蝕刻的TSV深度分布圖:(a)孔徑5 μm圓孔TSV;

(b) 孔徑5 µm 方孔TSV

由於方形孔徑的面積較大,蝕刻過程中 的反應物較容易往下進行蝕刻。因此經過相 同時間的蝕刻後,方形通孔TSV深度整體上 會比圓形通孔更深。在圖十三 (a)(b)即可觀 察到方孔TSV的深度相對的都大於圓孔。

Circular TSV															
Ra\No. of die Depth(µm)	1	2	3	4	5	6	7	8	9	10	11	12	13	Ave.	Uniformity (%)
1	46.6	45.5	45.5	44.2	42.8	42.4	42.3	42.0	42.3	42.7	43.6	44.2	45.5	43.81	5.18
0.92	47.9	46.9	46.8	46.0	45.5	44.7	44.6	44.2	44.7	45.1	45.6	46.0	46.8	45.75	4.06
0.85	47.8	47.0	47.3	46.9	45.6	45.4	45.1	45.1	45.5	45.6	46.0	46.0	46.4	46.13	2.97
0.78	48.8	48.3	49.2	48.8	47.5	47.3	47.3	46.9	46.9	47.0	47.0	47.0	47.3	47.63	2.47
Square TSV															
Ra\No. of die Depth(µm)	1	2	3	4	5	6	7	8	9	10	11	12	13	Ave.	Uniformity (%)
1	49.2	48.4	46.5	45.2	44.6	44.0	44.1	43.7	43.3	44.1	44.9	46.5	46.8	45.47	6.49
0.92	50.2	50.2	48.7	47.8	47.0	46.8	46.5	46.4	46.4	46.9	47.5	48.8	48.8	47.85	4.04
0.85	49.7	49.6	48.7	47.9	47.3	47.0	47.0	46.8	46.9	47.4	47.8	48.8	48.4	47.93	2.99
0.78	51.4	51.5	50.6	50.1	49.7	50.2	50.5	49.2	48.8	49.1	48.8	49.5	48.7	49.86	2.80

表一 不同Ra值的TSV深度及均匀度

另外在量測干涉光譜的同時也進行了孔 徑大小2D影像的量測分析,並將孔徑大小 數據加至TSV深度分布圖的副座標軸上如圖 十四所示,可以明顯看出TSV的深度與孔徑 變化之間存在正相關性,無論是圓孔TSV或 方孔TSV,當深度較深時,其孔徑也相對較 大。可以推斷RIE雖是一種非等向性蝕刻 (anisotropic etching) 技術,這種技術的特 點在於電漿在轟擊材料的過程中,垂直方向 的蝕刻速率遠高於側向,也因此能夠有效製 作出高深寬比的結構。然而,值得注意的是, 在蝕刻的過程當中,即使它是非等向性的, 側向仍然存在著一個較小的蝕刻速率。這也 説明當蝕刻深度增加時,還是會導致相對較 大的孔徑。

圖十五 TSV深度與孔徑CD分布圖: (a) 孔徑5 μm圓孔TSV; (b) 孔徑5 μm方孔TSV

在半導體製程中,晶圓會受到多種環境 條件的影響,像是溫度的變化。由於每種材 料具有不同的熱膨脹係數,當溫度有變化時, 熱膨脹係數的不匹配導致不同材料會以不同 的速度膨脹或收縮,造成晶圓變形,最終導 致晶圓翹曲 (warpage)。此外,晶圓在不同 製程中受到機械應力的作用。當晶圓受到應 力時,晶格結構會變形,這些不均匀的變形 也會導致晶圓翹曲。

如圖八所示,當晶圓有翹曲時,原本垂 直的TSV會稍微傾斜(紅色虛綫)。光線垂直 入射至傾斜的TSV底部存在一個極限角度θ, 當傾斜角度大於θ時,就沒有來自TSV底部 反射光訊號。假設有一TSV其孔徑為5 μm, 深度為52 μm,經由簡單幾何方法推算最大 容許的翹曲量為7.2 mm。這表示當晶圓翹 曲量超過7.2 mm時,就無法量測其深度。 由於TSV製程晶圓的翹曲程度經實際量測都 約在數十微米以內,僅為容許翹曲量的千分 之一,因此其對TSV深度的量測影響即可忽 略。

圖八 晶圓翹曲示意圖

結論

本研究展示了使用反射式光譜干涉量測模組進行高深寬比TSV深度量測,並探討蝕刻製程 TSV深度的均匀性。由於本實驗模組是一種高準確度、非破壞性且快速的量測模組,單點的量 測時間< 0.5 s,有利於與先進製程整合,即時監測並回饋量測結果以調整機台參數並優化製程。

研究結果顯示外線圈和内線圈的電流比對於TSV深度的均匀性有著極大的影響。透過調整 外/内線圈的電流比 (Ra)·降低Ra值有效地改善整片晶圓蝕刻深度的均匀性·圓孔TSV深度的均 匀度≤2.47%;方孔TSV深度的均匀度則是≤2.8%。此外亦觀察到TSV的深度與孔徑之間存在相 關性,當TSV深度較深時,其孔徑也相對較大。在本實驗中也確認了晶圓的翹曲程度皆在數十 微米以內,遠小於反射式量測模組對晶圓翹曲度的容許範圍。因此,這些TSV晶圓的翹曲程度 對於精確量測並無影響。

反射式光譜干涉技術未來的應用相當廣泛,我們未來也將改良原有的可見光量測光路設計, 擴充至紅外光波段量測能量,從而進行薄化晶圓製程線上厚度量測與製程優化,以及導入機器 學習模型從事多層膜厚快速量測等應用研究。

參考文獻

- 1. Ku, Y.-S.,(2014) Spectral reflectometry for metrology of three-dimensional throughsilicon vias. Journal of Micro/Nanolithography, MEMS, and MOEMS, 13(1): p. 011209-011209.
- 2. Quinten, M., (2012). A practical guide to optical metrology for thin films. John Wiley & Sons.
- 3. Hwang, S. and K. Kanarik, (2016). Evolution of across-wafer uniformity control in plasma etch. Solid State Technology, 59(5): p. 16-20

-0-0-

—作者简介-

謝文淇/量測中心

顧逸霞/量測中心/資深正研究員