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以對比學習為基礎結合深度圖之

印刷電路板瑕疵檢測

In today's PCB manufacturing process, the most widely used defect detection method is the AOI 
system. However, this system cannot detect defects on the side or underneath the objects being tested. 
Therefore, we have introduced depth maps captured by an infrared camera and combined them with 
deep learning to train a defect detection model, with the aim of detecting defects that were previously 
undetectable using traditional methods. Additionally, in cases where the manufacturing process typically 
yields a very high pass rate, the number of defect samples available for training the model is much smaller 
compared to good samples. This can lead to the model being dominated by the characteristics of good 
samples and failing to accurately identify defects. To address this issue of imbalanced data sets, we employ 
a training method based on contrastive learning and special optimizations for defect samples, resulting in 
excellent results with a leakage rate of 0.77% and a overkill rate of 0.99 %.

1. Background
Today, the manufacturing of Printed Circuit 

Boards (PCB) is predominantly achieved through 

Surface Mount Technology (SMT), which involves 

soldering electronic components onto the PCB using 

solder paste. After SMT assembly, it is necessary 

to inspect the soldered components for defects. The 

most widely used method for such inspection is the 

Automatic Optical Inspection (AOI) system. AOI 

systems utilize image technology to compare the 

differences between the test object and standard 

images to determine whether the test object meets 

the specified standards. However, AOI systems 

require the adjustment of numerous machine 

parameters to accommodate different test objects. 

Additionally, since the test object's images are 

captured from above using a camera, they can only 

inspect surface defects and are unable to detect 

defects on the sides or underneath the test object.

2.Motivation
  In light of the limitations of the aforementioned 

AOI system, we propose the training of a defect 
recognition model using machine learning. This 
approach aims to achieve higher accuracy in defect 
detection while increasing automation. To address 
the drawback of AOI systems not being able to 
detect defects on the sides or underneath the test 
object, we have introduced depth information for the 
test object to tackle this issue.

Methods
1. Defect Recognition Model
(1) Model’s Task

To obtain image data of the components, we 
begin by using an edge detection algorithm to 
identify the components on the PCB, and then 
each component is individually segmented into 
separate images. The model's task is to classify each 
component image as either a good component or a 
defective component. To provide a more detailed 
understanding of the types of defects, defective 
components are further categorized into 11 classes, 
including empty solder, short circuit, location shift, 
and others.
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(2) Evaluation Metrics

  Given the advancements in SMT technology, 

modern PCB manufacturing achieves high yield 

rate. Therefore, the primary focus of the model's 

task is to accurately identify a small number 

of defective components while avoiding good 

components are misclassified as defective. As a 

result, the key metrics for this task are the leakage 

rate and overkill rate. The leakage rate refers to the 

ratio of defective components incorrectly classified 

as good components, while the overkill rate is the 

ratio of good components wrongly classified as 

defective components. Lower values for these two 

metrics indicate better performance in classifying 

component defects.

2. Depth Information of Components
(1) Acquiring and Presenting

We use an infrared camera to capture the depth 

information of the test objects on the PCB that the 

result is a grayscale depth map. Grayscale values 

range from 0 to 255, with lower values visually 

representing objects farther away from the camera, 

indicating greater depth. Higher values represent 

objects closer to the camera, indicating shallower 

depth, as shown in Figure 1(b) (Andreas Eitel et 

al., 2015).

(2) Utilizing

We aim for the model to simultaneously 

learn from both the RGB color information of the 

components and the depth information. To achieve 

this, we concatenate the RGB image obtained from a 

regular camera with the depth map. However, since 

the depth map has only one channel (grayscale), 

while the RGB image has three channels, simply 

concatenating them would result in the depth 

information contributing only 1/3 of the total 

information learned by the model. To balance the 

amount of information learned from both images, 

we use the colorjet method (Andreas Eitel et al., 

2015) to convert the grayscale depth map into a 

3-channel RGB image, as shown in Figure 1(c) 
(Andreas Eitel et al., 2015). Therefore, the input data 

for the model consists of a 6-channel image created 

by concatenating the RGB image from the regular 

camera with the converted 3-channel depth map.

(3) Advantages

In the electronics manufacturing industry, there 

are other defect detection methods that use depth 

information, known as 3D AOI. 3D AOI builds on 

the foundation of 2D AOI by incorporating multiple 

directional light sources with the use of Moiré 

fringes or laser projection to calculate a 3D model 

of the test object. However, 3D AOI, like 2D AOI, 

requires the adjustment of numerous parameters 

depending on the test object's characteristics. 

Additionally, the inclusion of an extra dimension of 

information significantly increases the computational 

load, which can reduce inspection speed.

On the other hand, the depth information we 

introduced is in the form of 2D images. Compared to 

3D AOI, this approach allows maintaining essential 

Figure 1. Different Images of the Same Object
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depth information while effectively reducing 

the computational load, thereby accelerating the 

inspection speed. This presents a potential advantage 

in terms of efficiency and speed for defect detection 

in electronic manufacturing.

3.Characteristics and Corresponding 
Methods of Class-imbalanced Dataset 

(1) Class Imbalance

In today's  PCB manufacturing,  there is 

an extremely high yield rate, results in a class 

imbalance issue, where the majority of the data is 

from good components and there's a scarcity of 

defect component images. Training a conventional 

classification model on such imbalanced data 

leads to a situation where the model learns more 

about good components, and this can result in 

a bias where it tends to classify images as good 

components. In scenarios where the majority of the 

test data consists of good components, it can lead 

to high accuracy on paper but may fail to correctly 

classify defect components. Our experiments have 

also demonstrated that directly training a standard 

supervised classification model on such imbalanced 

data results in an extremely low overkill rate and 

a high leakage rate (as shown in Table 1), which 

means that the model tends to classify most images 

as good components, including some defective ones, 

leading to poor defect recognition performance.

Backbone Leakage rate (%) Overkill rate (%)

MobileNetV3-lrage (Andrew Howard et al., 2019) 12.3288 0.1986

ResNet-18 (Kaiming He et al., 2016) 15.0684 0.1264

ResNet-101 (Kaiming He et al., 2016) 17.1233 0.1083

Table 1. Predicting Results of Using General Classification Models

(2) Neural Network Model Training under Class 
Imbalance

1. Shortcomings of Traditional Methods
For addressing the issue of class imbalance, the 

traditional and most straightforward approach is re-
sampling, which comes in two main forms: over-
sampling the minority class or under-sampling the 
majority class. Both methods aim to equalize the 
class distribution through sampling. However, they 
each have their limitations.

Over-sampling, which involves replicating 
samples from the minority class, may lead to 
overfitting of the minority class. On the other hand, 
under-sampling, where samples from the majority 
class are reduced, may result in a significant 
reduction of information and cause a drop in the 
model's generalization ability.

2. Training Method based on Contrastive Learning
As mentioned in Section 貳、三、( 一 ), 

supervised learning performs poorly when dealing 

with class-imbalanced training data. To address this 
issue, we have adopted a self-supervised learning 
approach, specifically leveraging contrastive 
learning. Many contrastive learning methods are 
built on the task of instance discrimination, where 
each sample is treated as a positive example and 
augmented views of the same data are considered 
positive, while other samples are treated as 
negatives. By comparing the differences between 
positive and negative samples, a feature extractor is 
trained to learn richer and more stable features.

Contrast ive learning typical ly involves 
comparing each sample with a large number of 
negative samples. SimCLR (Ting Chen et al., 2020) 
achieves this by using extremely large batch sizes. 
In contrast, MoCo v2 (Xinlei Chen et al., 2020) 
stores a substantial number of negative samples in 
a queue, allowing training with smaller batch sizes 
while achieving better performance. Considering the 
advantages of MoCo v2, our training method is also 
based on this structure.
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Our architecture, as shown in Figure 2(a), 
consists of two networks with the same structure, 

referred to as the query network and the key 

network. Each network includes a feature extractor 

and a two-layer Multilayer Perceptron (MLP). 

Additionally, a fully connected layer is added to 

the feature extractor of the query network to serve 

as a classifier and a queue is used to store negative 

samples.

In the training process of the model, we denote 

the training dataset with n samples as D = {xi, 

yi}, where xi represents the i-th image sample, 

and yi represents the corresponding label. Taking 

xi as an example, we perform two types of data 

augmentations to get two different views, xi
q and 

xi
k. These views are separately input into the query 

network and the key network, and obtain high-

dimensional features zi
q and zi

k.

  Additionally, we use a queue Q to dynamically 

collect historical features. The queue push features 

from the current batch while popping the oldest 

batch's features. Assuming the size of the queue 

Q is N, we can set that N is much larger than the 

batch size, allowing the queue to provide abundant 

negative samples. In summary, our contrastive 

learning loss LCon is defined as:

LCon = ‒log	 (1)

where τ is a temperature hyperparameter. 

Through the contrastive learning loss LCon, we can 

increase the similarity between the two views from 

the same sample and decrease the similarity between 

two different samples, allowing the feature extractor 

to learn better features.

  After obtaining good features, the next step 

involves training a classifier that can correctly 

categorize these features. Typically, a classifier is 

trained using the cross-entropy loss. For a sample 

xi, the feature obtained from the feature extractor 

Fq is denoted as Fq(xi). The cross-entropy loss is 

formulated as:

LCE = ‒log                                                         (2)

where k represents the number of classes in the 

dataset. However, in the case of class imbalance, the 

overwhelming number of samples in the majority 

class can lead to gradient updates dominated by the 

majority class in the cross-entropy loss, causing the 

model to lean towards the majority class.

To solve this situation, we train the classifier 

using balanced softmax loss (Jiawei Ren et al., 

2020). Balanced softmax loss is based on the cross-

entropy loss but incorporates class sample counts as 

weights to balance the loss for each class, achieving 

a balanced gradient effect. It is formulated as:

LBS = ‒log                                                         (3)

where ni represents the number of samples in class 

to which sample xi belongs. Through the use of 

balanced softmax loss, we successfully balance the 

learning of the classifier. Therefore, the overall loss 

for the training framework is:

L = LCon + LBS 	 (4)

To further enhance the model's performance, 

we implemented several optimizations. First, in the 

original MoCo v2 architecture, the parameters of 

the key network are dynamically updated by the 

query network using momentum updates. However, 

recent research (Xinlei Chen et al., 2020) suggests 

that not updating the key network's parameters at all 

can lead to better training results. Our experiments 

(see Section 參、四、( 二 )) also support this 

finding. Therefore, in our training framework, the 

key network does not undergo gradient updates. 

Furthermore, to mitigate any inherent biases 

in the model that could impact training results, 

we simultaneously train multiple models, their 

predictions are aggregate to form the final output, 

∑k
j = 1 exp (Fq(xj))
exp (Fq(xj))

∑k
j = 1 nj exp (Fq(xj))
ni exp (Fq(xj))

exp ∑zjϵQ exp

exp
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which is referred to as ensemble learning.

  During the testing phase, samples are not 

subjected to data augmentation. Instead, they are 

directly input into the feature extractor Fq of the 

query network to obtain features, which are then 

classified by the classifier. This process is similar 

to a standard classification model, as depicted in 

Figure 2(b). Therefore, our training framework not 

only does not slow down the testing speed but also 

allows for improved classification results.

Figure 2. Training and Testing Architecture

4. Other Designs to Cope with Dataset 
Characteristics

(1) Lightweight Neural Network

  Considering the need for fast and real-time 

industrial inspection, we adopted the lightweight 

neural network MobileNetV3-large (Andrew 

Howard et al., 2019) as the feature extractor. In 

addition to its speed advantages, we also found 

that the results obtained when training with 

MobileNetV3-large outperformed those achieved 

with deeper neural networks. We discuss the reasons 

for this in more detail in Section 參、四、( 四 ).

(2) Optimized Design for Specific Categories

  Upon reviewing the test results, we observed 

that the recognition rates for certain defect 

categories, such as "empty solder" and "location 

shift," were particularly poor. After a detailed 

investigation, we believe the reason for this lies 

in the fact that these defect categories require 

the observation of the entire image for accurate 

detection. For example, in the "empty solder" 

category, many images exhibit insufficient solder 

paste at one end of the component, leading to an 

uneven height at the two ends of the component. 

This results in a color gradient in the depth image. In 

the "location shift" category, some images involve 

slight component displacements. Both of these 

scenarios require the observation of the entire image 

to identify defects accurately. However, convolution-

based neural networks, including the MobileNetV3-
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large that we are using, are designed to observe only 

local image information.

To address this issue, we replaced the SE 

block (Jei Hu et al., 2018) in the MobileNetV3-

large architecture with the Coordinate Attention 

block (CA block) (Qibin Hou et al., 2021) The 

SE block initially performs 2D global pooling to 

obtain features along the channel dimension and 

then applies channel attention, which results in 

improved performance with fewer computations. 

However, the SE block only considers inter-channel 

information and neglects positional information, 

making it unable to improve the problem of 

obtaining only local image information. In contrast, 

the CA block embeds positional information into 

channel attention, allowing a lightweight network 

to apply attention to the entire image without 

significantly increasing computational demands. Our 

experiments have demonstrated that by replacing 

the SE block in MobileNetV3-large with the CA 

block, we significantly enhance the recognition 

rates of defect categories that require observation 

of the entire image (see Section 參、四、( 五 )). 

This improvement has also positively impacted the 

overall model performance.

Results and Discussions
1. Dataset

The dataset we utilized comprises over 300 

passive components. The training dataset consists 

of a total of 568,751 images, with 505,030 images 

of good components and 63,721 images of defective 

components. The testing dataset comprises 5,222 

images, with 4,704 images of good components 

and 518 images of defective components. The 

dataset is categorized into 12 classes: good, location 

shift, short, empty solder, missing, inverted parts, 

tombstoning, row offset, opposite polarity, extra 

part, bridging, and other defects.

2. Implementation Details
The model utilizes a backbone consisting of 

MobileNetV3-large with SE block replaced by CA 

block. The queue size is set to 8192. A total of 4 

model instances are used for ensemble learning. We 

use the SGD optimizer with a momentum of 0.9 and 

a weight decay of 0.0002. The learning rate starts 

at 0.02 and decreases using cosine annealing. The 

model is trained for a total of 400 epochs with a 

batch size of 64.

3. Experimental Results
  As mentioned in Section 貳、一、( 二 ), our 

evaluation metrics are leakage rate and overkill 

rate. The calculation for these metrics is as follows. 

Leakage rate: the number of samples where 

defective components of the 11 categories are 

misclassified as "good" divided by the total number 

of defective component samples; Overkill rate: the 

number of "good" component samples misclassified 

as any of the defective categories divided by the 

total number of "good" component samples. Our 

architecture achieved outstanding results on the 

test dataset with a leakage rate of 0.7722 % and an 

overkill rate of 0.9991 %.

4. Discussions
(1) Impact of Applying Depth Maps

To validate the impact of incorporating depth 

information and applying colorjet to depth maps, 

we compared the following methods: using only 

RGB images, using only colorjet-processed depth 

maps, concatenating RGB images with original 

grayscale depth maps (4-channel), and concatenating 

RGB images with colorjet-processed depth maps 

(6-channel). The experimental results are shown in 

Table 2, confirming that the combined use of RGB 

images and depth maps significantly improves the 

model's performance. Additionally, applying colorjet 

to depth maps further enhances the results.
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(2) Influence of Stop-gradient

As mentioned in Section 貳、 三、( 二 ) 2., in 

the original MoCo v2 architecture, the parameters 

of the key network are dynamically updated by the 

query network periodically. Therefore, we compared 

the practice of stopping gradient updates with the 

use of the original parameter updating method to 

demonstrate the effectiveness of stopping gradient 

updates in the key network. The results are presented 

in Table 3.

Input Image Leakage rate (%) Overkill rate (%)

RGB Image 1.2445 1.9861

Depth Map 0.9871 2.1673

RGB Image + Grayscale Depth Map 0.9131 1.0620

RGB Image + Colorjet Depth Map 0.7722 0.9991

Gradient Update Leakage rate (%) Overkill rate (%)

Momentum Update 0.9784 1.5965

Stop-gradient 0.7722 0.9991

Model Leakage rate (%) Overkill rate (%)

Ensemble 0.7722 0.9991

Model 1 0.9871 0.9183

Model 2 0.7961 1.2732

Model 3 0.9235 1.0646

Model 4 0.6846 1.9041

Table 2. Comparison of Results from Different Input Images

Table 3. Comparison of whether Key Network Performs Gradient Update or not

Table 4. Results of Individual Model and Ensemble

(3) The Effect of Ensemble Learning

We used a total of 4 models for the classification 

task and averaged the predictions of each model 

to obtain the final prediction. In this section, we 

compared the predictions of each individual model 

with the integrated predictions. The experimental 

results are shown in Table 5, demonstrating that 

ensemble learning can indeed improve model 

performance. Additionally, from Table 4, it can 

be observed that the predictions of Model 4 are 

particularly extreme, which can be attributed to 

neural network oscillations. However, through 

ensemble learning, we can effectively mitigate this 

issue.

(4) Selection of Neural Network

In the selection of neural  networks,  we 

considered the model's prediction speed and 

chose the lightweight network MobileNetV3-

lrage. We were pleasantly surprised to find that 

MobileNetV3-lrage outperformed deeper networks. 

The comparative results are shown in Table 5. 

For this situation, we believe there are two main 

reasons: First, due to the limited training data for 

our defect elements, deeper neural networks are 

more prone to overfitting the training data, resulting 

in poor performance on the test data; On the other 

hand, transformer-based networks lack the inductive 

biases that convolutional neural networks have, 

such as translation equivariance and locality. As a 

result, they require longer training times and may 

not effectively learn with limited training data 

(Zhengzhuo Xu et al., 2022).
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(5) The Effect of CA Block

  In terms of feature extractor optimization, we 

compared the predictive results of models using the 

original MobileNetV3-lrage and the MobileNetV3-

lrage with SE blocks replaced by CA blocks. The 

results are shown in Table 6. Besides the overall 

improvement in performance, we also analyzed 

the leakage rates for each category. We observed 

significant reductions in the leakage rates for 

defect categories that require observing the entire 

image, such as "empty solder" and "location shift," 

as well as improvements in other categories. This 

demonstrates that introducing global positional 

information through CA blocks has indeed helped 

the model in recognizing specific defect categories.

Backbone Leakage rate (%) Overkill rate (%)

MobileNetV3-lrage (CA block) 0.7722 0.9991

ResNet-18 (Kaiming He et al., 2016) 0.9438 1.2644

ResNet-101 (Kaiming He et al., 2016) 1.0725 1.0831

ConVNeXt_tiny (Zhuang Liu et al., 2022) 0.8687 1.2661

ConVNeXt_small (Zhuang Liu et al., 2022) 0.7722 1.3618

EfficientFormerv2_S0 (Yanyu Li et al., 2022) 1.0135 1.3021

EfficientFormerv2_S1 (Yanyu Li et al., 2022) 0.9652 1.4402

Class MobileNetV3-large MobileNetV3-large (CA block)

Total 0.9473 0.7722

Location Shift 1.5628 1.3267

Short 0.1660 0.0415

Empty Solder 1.1898 1.0946

Missing 0.0000 0.0000

Inverted Parts 0.0000 0.0000

Tombstoning 0.0870 0.0870

Row Offset 1.0607 1.0607

Opposite Polarity 1.6730 0.8365

Extra Part 0.9456 0.0000

Bridging 1.1153 0.5583

Other 3.2904 2.4076

Table 5. Comparison of Using Different Backbones

Table 6. The leakage rate (%) of each class whether the Backbone Replaces the CA block or not

Conclusion
In this paper, we propose a precision printed circuit board (PCB) defect detection method based on 

contrastive learning and the integration of depth information. Our approach focuses on two key aspects: 

firstly, by incorporating depth maps captured through infrared imaging, we can detect defects on the sides and 

underneath the test objects, which are typically challenging for conventional AOI systems to assess. Secondly, 

addressing the issue of class imbalance due to the scarcity of defect samples in the training dataset, we utilize 

contrastive learning as the foundation and implement other optimization strategies. These efforts result in a 

robust classification model that achieves impressive detection performance with a leakage rate of 0.7722 % and 

an overkill rate of 0.9991 %.
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