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以振動訊號進行塑膠射出
成型產品重量虛擬量測

Plastic injection molding is a critical manufacturing process, vital to meet growing industrial demand 
for high-quality products. Geometric appearance and part weight are key quality attributes. To address 
this, we employ Vibration Analysis and Artificial Neural Networks (ANN) to predict these qualities cost-
effectively.

We collected vibrational data using an accelerometer on the injection molding machine's toggle pin 
bearing. Analyzing low-frequency vibrations during the injection process, we used this data as inputs 
for two feed-forward ANNs. The first ANN classifies parts into normal, over, or short shots with 100% 
accuracy. The second ANN predicts part weights with a maximum error of 0.715 %, surpassing Support 
Vector Regression's 6.287 % error in a prior study.

The ANNs' superior performance is attributed to the abundant vibrational signatures used as inputs. 
This approach enhances the efficiency and effectiveness of plastic injection molding, ensuring products 
meet specific quality requirements amid growing competition.

Plastic, due to its versatile nature, has found 

immense application globally, leading to the 

prominence of plastic injection molding in the 

polymer processing sector (He et al., 2000). This 

method, which involves injecting hot molten plastic 

into molds and solidifying it, is pivotal for crafting a 

diverse array of cost-effective components varying 

in size and complexity (Tang et al., 2007). The 

intricate injection molding process is delineated 

into six stages, encompassing everything from the 

initial feeding of the granular thermoplastic material 

to the eventual ejection of the final product. The 

phase where molten plastic fills the mold, known 

as the filling stage, stands out in its significance 

to the overall product quality (Lou et al., 2003). 

Studies, such as those by Sadeghi, underscored the 

pivotal role of mold cavity pressure in determining 

the product's quality. Further, while mold cavity 

pressure, nozzle pressure, and hydraulic pressure are 

intricately linked to product quality, the challenges 

of sensor installations, including their cost and the 

need for frequent replacements, are undeniable 

(Sadeghi, 2000). Thus, emerges the appeal of 

vibration analysis as an innovative and cost-effective 

solution.

Vibration analysis, extensively employed 

for machine condition monitoring, leans on 

accelerometers to record vibrational nuances 

(Vishwakarma et al., 2017; Ravi et al., 2005). The 

vibrational data, particularly within the frequency 

domain, holds rich insights into part quality. 

Notably, the low trending frequency range within the 

recorded vibrational signal offers valuable insights 

into product quality. Augmenting this with artificial 

neural networks (ANN) offers a potent combination. 

ANNs ,  in i t i a l ly  concep tua l i zed  to  mimic 

mammalian brain functionalities, have burgeoned 

across disciplines, driven by their prowess in 
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handling intricate non-linear systems (Olden et al., 

2004; Chow et al., 2002; Cook et al., 2000; Woll and 

Cooper, 1997; Chen and Ramaswamy, 2002). Of the 

myriad ANN algorithms, Bayesian regularization 

has showcased superior performance, a finding 

supported by rigorous testing (Kayri, 2016). 

Building on this foundation, the current research 

employs MATLAB's neural network tools to train 

the Bayesian regularization algorithm, aiming 

to oversee the performance of a plastic injection 

molding machine.

 Injection molding, with its unparalleled 

capability to produce high volumes swiftly, is a 

darling of the industry. This efficiency, however, is 

coupled with the challenge of ensuring consistent 

quality, which hinges on design intricacies and 

meticulous processing (Yeung and Lau, 1997; Dimla 

et al., 2005; Lau and Tse, 1997; Masood and Song, 

2004). While the process has historically been 

somewhat of a 'black art', relying substantially on 

experiential knowledge, modern advancements offer 

a glimmer of methodical precision. Techniques like 

numerical simulations and intelligent systems have 

been championed for monitoring and optimizing 

the injection molding process (Lou et al., 2003; 

Sadeghi, 2000; Espejo, 2006; Yang et al., 2000; Li 

et al., 2008). Central to this research is the ambition 

to harness vibration analysis for monitoring 

variations in product quality during the plastic 

injection molding process. Highlighted are two 

pivotal attributes of moulded parts: their weight and 

physical appearance. The physical manifestations 

can be segmented into three categories, showcased 

in Figure 1(a) for over- shot, 1(b) for short-shot, 

and 1(c) for normal shot. The first two are deemed 

defective, resulting from either an excess or dearth 

of molten material. Achieving the ideal 'normal 

shot' necessitates precise parameter adjustments 

by the machine operator. As production scales up, 

the traditional reliance on manual checks becomes 

untenable, amplifying the likelihood of quality 

degradation. Addressing this, the research advocates 

the integration of machine learning for an automated 

and precise monitoring system.

Figure 1. Photo of (a) over-shot, (b) short-shot, and (c) normal shot

Experimental Details
The research utilized CHUAN LIH FA’s 

CLF-60TX plastic injection moulding machine, 

consisting of a plastic injection unit and a mould 

clamping unit (Figure 2(a)). The injection unit is 

responsible for melting thermoplastics and injecting 

them into the shaping mould. The clamping unit 

ensures mould alignment, keeps it closed during 

the injection, and controls its opening and closing. 

For consistency, a single shaping mould was used 

to produce a disposable cake knife, chosen for its 

simple geometry (Figure 2(b)).
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In the experimental setup, two accelerometers, 

Acc1 and Acc2, were attached to the injection screw 

bearing (Figure 3(a)) and the toggle pin bearing 

(Figure 3(b)) respectively. A strain gauge was 

positioned on the clamping unit's tie-bars. These 

sensors fed data to an IMC Data Acquisition System, 

which was linked to a laptop for data logging.

Figure 2. Photo of the (a) CLF-60TX plastic injection molding machine, (b) Disposable Cake Knife shaping mold

Figure 3. Photo of an accelerometer mounted on the (a) Injection screw bearing, and (b) toggle pin bearing

Injection moulding's quality is influenced by 

machine input parameters like injection speed, 

packing time, material temperature distribution, 

and holding force (Brydson, 1995; Pötsch and 

Michaeli, 1995; Sadeghi and Akbarzadeh, 2011; 

Rosato and Rosato, 2000; Chiang and Chang, 2006; 

Huang and Tai, 2001; Wang, 2002). To study these 

effects, a Local Sensitivity Analysis was employed, 

streamlining the understanding of input parameter 

variations on the output. The steps for data collection 

began by identifying a parameter combination for a 

‘normal shot’, measuring the weights of produced 

parts, and then systematically varying individual 

parameters, measuring the weights, and recording 

vibrational signals. The data collected is summarized 

in Table 1, which details 11 tests with varied 
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Figure 4. General vibrational profiles recorded by Acc1, Acc2 and Strain gauge for (a) a normal shot, (b) an 
over shot, (c) a short shot. Position 1~4 refer to: 1=Closing of mould, 2=Injection screw moves 
forward, 3=Injection screw stops spinning and injection starts, 4=End of injection period/start of 
packing period

parameters. The first test combination resulted in 

an ideally moulded part, while the subsequent tests 

involved parameter adjustments. Varied parameters 

are highlighted in purple in the table, with visual 

classifications of parts produced by different 

combinations.

Table 1. List of 11 combinations of 12 varying experimental parameters

Signal Processing
 Acc1 and the strain gage were used to delineate 

the stages of the injection cycle, as shown in 

Figures 4(a)-(c). Acc2 provided insights into part 

quality, with distinct impulse profiles observed for 

different shot types (Figures 4(a)-(c)), detailed in 

Table 2.
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In our theoretical analysis, the Root Mean 

Square (RMS) is calculated as:

 (1)

 

The vibrational signal from Acc2 aligned with an 

over-damped second-order impulse response. Using 

a second-order transfer function (TF) presented as:

G(s) =                                                               (2)

we derived insights about natural frequency (ωn) 

and Damping ratio (ζ) using:

ωn = √ b                                                             (3)

ζ =                                                                    (4)

The TF, G(s), can also be represented as:

G(s) =                                                               (5)

Transforming this yields:

G(s) =                                                               (6)

From which:

a =                                                                    (7)

b =                                                                    (8)
 

For feature extraction, the vibrational data 

from Acc2 underwent conversion. A low-pass filter 

isolated the low-frequency profile, then the injection 

impulse response time was extracted. Using 

MATLAB’s PIDTOOL, the profile was matched to 

a transfer function across 142 injection cycles. This 

process for a normal shot is illustrated in Figures 
5(a)-(d), and similarly, over shot and short shot 

processes are depicted in the same way.

b
s2 + as + b

k
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 +1)(T2s
 +1)
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Table 2. Vibrational profiles of the injection period acquired by Acc2 for a normal, over and short shot. The 
unit for y-axis is ms-2
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Figure 5.  Illustration of the steps taken to generate the transfer function for a normal shot (a) Raw 
vibrational profile for a normal shot; (b) Low frequency trending signal; (c) Extracted injection 
impulse response area bounded by red arrows in Fig. 5(b); (d) Generated transfer function for a 
single normal shot

Results and Discussion
A total of 10 machine control parameters and 8 

vibrational features as shown in Table 3 were used 

as inputs for the neural network. The vibrational 

features were obtained from fitting the injection 

profiles to a specific transfer function G(s).

Machine Control Input Parameters Vibrational Features Input Parameters

Part Number K

Injection Speed (mm/s) T1

Clamping Force (Tons) T2

Packing Time (s) a

Packing Pressure (bar) b

Initial Screw Position (mm)
k

Material temperature 1 Natural Frequency

Material temperature 2 Damping Ratio

Material temperature 3

Material temperature 4

Material temperature 5

Table 3. Input parameters to the ANN obtained from the machine controller and the vibrational feature extraction

T1×T2

The artificial neural network classified parts 

and predicted weights. Trained using a Bayesian 

Regularization Algorithm, the feed-forward neural 

network used 19 features as inputs. Data from 142 

injected parts were used, with 85 for training, 7 for 

validation, and 50 for testing. The neural network 

achieved 100 % classification accuracy, as detailed 

in Figure 6.
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Figure 6. Confusion matrix displaying the ANN´s performance

Figure 7. Error deviation for the input-output predictor ANN

For weight prediction, another feed-forward 

neural network processed data from 142 injected parts. 

The predictions deviated by approximately ± 0.09 g 

(Figure 7). This approach had a lower error than the 

method by Li, Hu, and Du (2008). Figure 8 compares 

the actual measured part weight to the neural network's 

prediction. The maximum weight difference was 

approximately 0.08726 g.
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Figure 8. Plot of measured part weight superimposed on the ANN ś weight prediction

A comparison between the machine's moulding 

accuracy and the ANN's accuracy revealed the 

ANN provided more accurate weight predictions for 

most parameter combinations, except for two cases 

highlighted in red as shown in Table 4.

Table 4. Injection Moulding Machine ś Deviation compared to ANN ś Prediction Deviation
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Understanding input parameter importance 

aids machine operators. Although the ANN was 

considered a 'black box', input parameter importance 

can now be ranked using a Connection Weight 

Approach (Olden and Jackson, 2002). The most 

sensitive machine input parameters were identified 

as initial screw position, packing time, and clamping 

force as shown in Table 5.

Table 5. Ranking importance of input parameters

Conclusion
Plastic products have gained immense popularity over the years, largely attributed to their unique properties 

such as corrosion resistance, chemical resistance, low density, and ease of manufacturing (Chen and Shiou, 

2003). Among the various methods of producing plastic items, injection molding stands out as one of the most 

prevalent techniques. It's imperative that plastic injection molding machines maintain high production volumes 

consistently.

 However, over time, the performance of injection molding machines can vary, necessitating the presence 

of an onsite machine operator to vigilantly supervise the entire process. This operator is tasked with inspecting 

every molded part to ensure stringent quality control. Yet, given the large-scale nature of this task, it becomes 

laborious and prone to human errors.

This research introduces a novel method that combines vibrational analysis with artificial intelligence to 

meticulously monitor the quality and weight of molded parts. The study revealed that the accelerometer, when 

positioned on the toggle pin bearing, offers substantial insights related to part quality and weight, especially 

within the low-frequency domain. Specifically, the time span associated with the injection impulse response 

was found to be rich in critical vibrational data. This vibrational information, combined with machine input 

parameters, was instrumental in training a feed-forward classification artificial neural network. Impressively, 

the trained network demonstrated the capability to flawlessly categorize the physical appearance of each 
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injected part as a normal shot, over shot, or short shot. Furthermore, a second feed-forward network, mirroring 

the structure of the classification network, was trained to estimate the weight of each molded part. Preliminary 

results showed that the ANN could predict the part's weight with an impressive accuracy, deviating by a mere 

0.715 % from the actual weight.
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