

財團法人全國認證基金會 **Taiwan Accreditation Foundation**

認證證書

(證書編號: LN0688-230717)

茲證明

國家度量衡標準實驗室 國家度量衡標準實驗室(電量/電磁/光學/長度)

新竹市光復路二段 321 號

為本會認證之實驗室

認 證 依 據: ISO/IEC 17025: 2017; CNS 17025: 2018

認 證 編 號: N0688

初次認證日期:八十九年十月十五日

認證有效期間: 一百零八年十月十五日至一百一十三年十月十四日

證 範 圍:校正領域,如續頁 認

特定服務計畫:國家標準實驗室認證服務計畫

董事長

中華民國一一二年七月十七日

認 證 編 號: N0688 實驗室主管: 林增耀

長度

長度									
項目代碼/	最高 工作標準件	校正方法		校正	- 範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KA1001 長塊規 (ISO 3650, CNS 8092) (鋼質) 報告簽署人:	長塊規 /KOBA/26088 張明偉; 張國明;	自訂長塊規校正系統校 正程序-使用精密型長 塊規量測儀 (文件編號: 07-3-95-0033) 陳文仁; 蔡錦隆	100	mm	1000	mm		[67 ² + (365L) ²] ^{0.5} nominal length L in m	nm
KA1001 長塊規 (ISO 3650, CNS 8092) (鋼質)	長塊規 /KOBA/1008M	自訂長塊規校正程序一使用萬能測長儀 (文件編號: 07-3-84-0105)	100	mm	600	mm		$[84^2+(735L)^2]^{0.5}$ nominal length L in m	nm
報告簽署人:	張明偉;張國明;	陳文仁;蔡錦隆							

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KA1001	標準塊規/PTW/	自訂塊規校正程序—	0.5	mm	100	mm	鋼質	$[39^2 + (0.5L)^2]^{0.5}$ nominal length L in mm	nm
塊規	B-1 & B-18	Federal 塊規比較儀							
(ISO 3650/ 122 片,		(文件編號: 07-3-86-0034)	0.5	mm	100	mm	陶瓷	$[39^2 + (0.6L)^2]^{0.5}$ nominal length L in mm	nm
CNS 8092/									
122 片) (鋼			0.5	mm	100	mm	碳化鉻	$[40^2 + (0.8L)^2]^{0.5}$ nominal length L in mm	nm
質,陶瓷,碳									
化鉻,碳化			0.5	mm	100	mm	碳化鎢	$[40^2 + (1.9L)^2]^{0.5}$ nominal length L in mm	nm
鵭)				Δ					
	張明偉;張國明;							2.05	
	紅光穩頻雷射	自訂塊規校正程序—	0.5	mm	100	mm		$[23^2 + (0.30L)^2]^{0.5}$	nm
		塊規干涉儀						nominal length L in mm	
(ISO 3650/ 122 片,	25-STP-912-249	(文件編號: 07-3-93-0141)							
CNS 8092/									
122 片)									
(鋼質)									
報告簽署人:	張明偉;張國明;	陳文仁;蔡錦隆							
KA1002	針規/GSG	自訂針規校正程序	1	mm	20	mm		[0.22 ² + (0.013D) ²] ^{0.5}	μm
針規		(文件編號: 07-3-95-0050)						external diameter D in mm	
1 1 14	張明偉;張國明;					-			

項目代碼/	最高 工作標準件	校正方法		校正	.範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
塞規	塞規/GSG/ 20 & ETALON/ 50	自訂塞規校正程序-使用 Labmaster 雷射測長儀 (文件編號: 07-3-95-0132)	20	mm	100	mm		1.98×[0.135 ² + (0.00137L) ²] ^{0.5} external diameter L in mm	μm
報告簽署人:	張明偉;張國明	; 陳文仁; 蔡錦隆							
環規	環規/Cary/ 12 & VK/ 50 & VK/100	自訂環規校正程序—使 用 Labmaster 雷射測長儀 (文件編號: 07-3-90-0138)		mm	200	mm		$1.99 \times [0.135^2 + (0.00137L)^2]^{0.5}$ internal diameter L in mm	μm
報告簽署人:	張明偉; 張國明	;陳文仁;蔡錦隆		\angle					
	雷射干涉儀 /HP/5517A	自訂階規校正程序 (文件編號: 07-3-A5- 0193)	10	mm	1010	mm		$1.97 \times [0.29^{2} + (4.03 \times 10^{-7} \text{L})^{2}]^{0.5},$ L in mm	μm
	張明偉;張國明	;陳文仁;蔡錦隆							
KA1011 陇宫煙淮出	氦氖穩頻雷射 /Melles Griot/	自訂階高標準片校正程序-光學式	0.01	μm	3	μm		$[3^2 + (1.2D)^2]^{0.5}$ step height D in µm	nm
	05-STP-901	(文件編號: 07-3-93-0010)	> 3	μm	100	μm		$[9.5^2 + (3.6D)^2]^{0.5}$ step height D in μ m	nm
報告簽署人:	張明偉; 張國明	; 陳文仁; 蔡錦隆							
階高標準片	階高標準片 /Taylor Hobson/ 112-557	自訂階高標準片校正程 序-探針式 (文件編號: 07-3-92-0097)	0.01	μm	50	μm		$[5^2 + (3.2D)^2]^{0.5}$ step height D in µm	nm
報告簽署人:	張明偉;張國明	; 陳文仁; 蔡錦隆							

項目代碼/	最高 工作標準件	校正方法		校正	.範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KA1012	銣原子鐘	自訂大地長度儀器校正	0.000	km	0.432	km	解析度: 0.1 mm	$[0.8^2 + (0.4L)^2]^{0.5}$ L in km	mm
電子測距儀,	/Datum/8040A	程序	0.000	1	0.422	1	hn 12 5 1 0	F1 O2 - (O 4T > 210 5T : 1	
全測站		(文件編號: 07-3-81-0007)	0.000	Km	0.432	km	解析度: 1.0 mm	$[1.0^2 + (0.4L)^2]^{0.5}$ L in km	mm
報告簽署人:	張明偉;張國明	; 陳文仁; 蔡錦隆	1		l				
校正場地: 1.	新竹國家標準基	線場							
KA1018	鉫原子鐘	自訂碘穩頻氦氖雷射校	633	nm	633	nm	474 THz	0.002	fm
穩頻雷射	/Stanford	正程序(文件編號:							
	Research	07-3-A1-0124)							
	Systems/FS 725								
報告簽署人:	張明偉;張國明	;陳文仁;蔡錦隆							
TZ A 1010	1 44 4 5 5 4	1. 1. 15 Jan - 1. 11 Jan - 1. 11	622	A	622		47.4 TH	0.02	
44 II T 11	碘穩頻氦氖雷	自訂穩頻雷射校正程序	633	nm	633	nm	474 THz	0.03	fm
	射/	(文件編號: 07-3-85-0051)							
	CMS/NML &								
	Winters/NML								
報告簽署人:	張明偉;張國明	;陳文仁;蔡錦隆							
TZ A 1000	エムエッド	ムムエムエッドドエの	0.1	l	10			1201 \ 2105 L :	
KA1020	雷射干涉儀	自訂雷射干涉儀校正程	0.1	m	10	m	加入環境感測器	$[62^2 + (120L)^2]^{0.5}$ L in m	nm
雷射干涉儀	/HP/5519A	序							
		(文件編號: 07-3-90-0056)							

項目代碼/	最高 工作標準件	校正方法		校正	範圍			量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位		說明	數值	單位
KA1021	鉫原子鐘	自訂 GPS 靜態及動態定	≤ 50	m	≤ 50	m	(1) 靜態相對定位:	5.1	mm
衛星定位儀	/Datum/8040A	位校正系統校正程序						(a) 超短距離		
		(文件編號: 07-3-91-0086)	≤ 25	km	≤ 25	km	()	1) 靜態相對定位:	19	mm
								(b) 中距離		
			≤ 50	m	≤ 50	m	(2	2) 動態相對定位:	5.1	mm
								(c) 超短距離		
							(3) 單點絕對定位	35	mm
		;陳文仁;蔡錦隆								
KA1022	聚苯乙烯球	自訂奈米粒徑校正程序-	20	nm	250	nm	粒徑	聚苯乙烯球, 粒徑 D	0.021D + 0.115, D in nm	nm
標準粒子	/NIST 1963a,	微分電移動度分析法	> 250	nm	< 350	nm	粒徑	聚苯乙烯球, 粒徑 D	0.012D, D in nm	nm
	NIST 1691, Thermo 3500A	(文件編號: 07-3-97-1826)	350	nm	500	nm	粒徑	聚苯乙烯球, 粒徑 D	0.022D + 2.027, D in nm	nm
報告簽署人:	林芳新; 張敬萱	; 陳生瑞; 傅尉恩								
KA1022 標準粒子	標準金粒子 /NIST/8011/	自訂掃描式電子顯微量 測系統校正程序-標準奈	10	nm	< 30	nm		粒徑	1.5	nm
	8012/8013	米粒徑 (文件編號: 07-3-A0-2415)	30	nm	60	nm		粒徑	5.4	nm
	林芳新; 張敬萱									

項目代碼/	最高 工作標準件	校正方法		校正章	節圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KA1022	動態光散射儀	自訂奈米粒徑校正程序-	20	nm	20	nm	粒徑 聚苯乙烯球	0.8	nm
標準粒子	/Malvern/	動態光散射法					20 nm to 1000 nm		
	Zetasizer Nano ZS/	(文件編號: 07-3-94-0104)	> 20	nm	50	nm	粒徑 聚苯乙烯球	1.8	nm
	散射角度: 173°						20 nm to 1000 nm		
			> 50	nm	100	nm	粒徑 聚苯乙烯球	3.3	nm
							20 nm to 1000 nm		
			> 100	nm	200	nm	粒徑 聚苯乙烯球	6.4	nm
							20 nm to 1000 nm		
			> 200	nm	300	nm	粒徑 聚苯乙烯球	9.8	nm
							20 nm to 1000 nm		
			> 300	nm	500	nm	粒徑 聚苯乙烯球	17	nm
							20 nm to 1000 nm		
			> 500	nm	800	nm	粒徑 聚苯乙烯球	26	nm
							20 nm to 1000 nm		
			> 800	nm	1000	nm	粒徑 聚苯乙烯球	34	nm
							20 nm to 1000 nm		
報告簽署ノ	人: 林芳新; 張敬萱; 凡	東生瑞; 傅尉恩							
			_						
	雷射干涉儀	自訂標準尺校正程序	0.01	mm	1000	mm		$[29.6^2 + (0.126L)^2]^{0.5}$	nm
標準直尺	/KEYSIGHT/5517C	(文件編號: 07-3-84-0055)						line spacing L in mm	
報告簽署人	人: 張明偉; 張國明; P	東文仁; 蔡錦隆							

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱 /編號	最小 範圍	單位	最大範圍	單位	說明	數值	單位
KA2002	雷射干涉儀	自訂長尺校正程序	0.001	m	10	m		$[16.9^2 + (2.9L)^2]^{0.5}$	μm
標準捲尺, 鋼捲尺	/Agilent/5519A	(文件編號: 07-3-A5-0037)						line spacing L in m	
報告簽署人:	張明偉;張國明;	陳文仁; 蔡錦隆							
				1					
KA2013	雷射干涉儀	自訂長尺校正程序	0.1	m	3	m		$[11.2^2 + (2.6L)^2]^{0.5}$	μm
條碼銦鋼尺	/Agilent/5519A	(文件編號: 07-3-A5-0037)						line spacing L in m	
報告簽署人:	張明偉;張國明;	陳文仁; 蔡錦隆							
	標準線距/	自訂掃描式電子顯微量測系	70	nm	< 700	nm		0.29	nm
線距標準片		統校正程序-線距標準片	700	nm	1000	nm		2.9	nm
	70-1DUTC	(文件編號: 07-3-A0-2414)	700	11111	1000	11111		2.)	11111
報告簽署人:	林芳新; 張敬萱;	陳生瑞;傅尉恩							
TT 1 201 1	- 1 1. W		70		2.5			0.1.1	
KA2014	雷射干涉儀	自訂線距校正系統校正程序	50	nm	25	μm		0.14	nm
線距標準片		一計量型 AFM							
	RLU10-A3-A3	(文件編號: 07-3-A3-0267)							
報告簽署人:	林芳新; 張敬萱;	陳生瑞; 傅尉恩							
KA2014	氦氖雷射/	自訂線距標準校正程序-	280	nm	300	nm		0.008	nm
線距標準片	Melles Griot/	雷射繞射儀	> 300	nm	700	nm		0.030	nm
	25LGR193-249	(文件編號: 07-3-93-0067)	> 700	nm	10000	nm		6.4	nm
報告簽署人:	林芳新; 張敬萱;	陳生瑞: 傅尉恩	1	1					

項目代碼/	最高 工作標準件	校正方法		校正氧	範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱 /編號	最小 範圍	單位	最大範圍	單位	說明	數值	單位
KA3001	角度塊/Starrett/	自訂角度塊規校正程序	1	"	45	0		0.45	"
角度塊規	AG16.LM	(文件編號: 07-3-76-0068)							
報告簽署人:	張明偉;張國明;	東文仁; 蔡錦隆							
	反轉技術原理	自訂直角規校正程序	1	mm	600	mm		0.32 (0.93 μm/600 mm)) "
圓柱型直角		(絕對式)							
量規,直角		(文件編號: 07-3-91-0170)							
量規,角尺									
報告簽署人:	張明偉;張國明;	東文仁; 蔡錦隆							
KA3004	精密多邊規	自訂分度盤校正程序	0.1	0	360	0		0.20	"
精密分度盤	/Starrett/OP-12 &	(文件編號: 07-3-91-0026)							
	OP-18 & 多邊規								
	/CSSC/—								
報告簽署人:	張明偉;張國明;	東文仁; 蔡錦隆							
KA3005	封閉圓原理	自訂多邊規校正程序	3	face	72	face		0.15	"
多邊規		(文件編號: 07-3-86-0023)							
報告簽署人:	張明偉;張國明;	東文仁; 蔡錦隆							

項目代碼/	最高 工作標準件	校正方法		校正道	範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KA3007 光學經緯 儀,電子經 緯儀,全測 站	360 齒分度盤/ AA GAGE/ 2921487	自訂大地角度儀器校正程序 (文件編號: 07-3-85-0085)	0	0	360	0		0.8	"
	張明偉;張國明;	陳文仁; 蔡錦隆							
KA3016	小角度產生器	自訂電子水平儀校正程序	- 6	1	6	'	解析度: 0.2"	0.5	"
電子水平儀	/Hilger & Watts/ TA48	(文件編號: 07-3-81-0006)	-1	0	1	0	解析度: 1"	1.3	"
報告簽署人:	張明偉;張國明;	陳文仁; 蔡錦隆	-1		1		解析度: 2"	2.0	
KA4001 表面粗糙度	階高標準片 /Taylor Hobson/	自訂表面粗度標準片校正程 序(文件編號: 07-3-76-0064)	0.01	μm	20	μm	Average parameters, Ra and Rq	$[5^2 + (13R)^2]^{0.5}$ R in μ m	nm
標準片	112-557	71 (X1) with shift. 07 3 70 0001)	0.01	μm	20	μm	Average parameters, Rmax, Rt and Rz	$[20^2 + (13R)^2]^{0.5}$ R in μ m	nm
報告簽署人:	張明偉;張國明;	陳文仁; 蔡錦隆							
KA4004 真圓度標準 件	塊規/Mahr/	自訂真圓度標準件校正程序 (文件編號: 07-3-76-0019)	0.01	μm	2	μm		15	nm

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KA4004 真圓度標準 件	真圓度倍率標準件 /Taylor Hobson	自訂真圓度標準件校正程序- 主軸旋轉式 (文件編號: 07-3-98-3024)	0.01	μm	2	μm		$[5.0^2 + (67R)^2]^{0.5}$ R in μ m	nm
•	 張明偉; 張國明; 陳文化	,							
KA4008 座標量測儀 (含遊校)	LaserTRACER/ eTALON	自訂座標量測儀校正程序 (文件編號: 07-3-A4-0118)	200	mm	10000	mm		$\begin{array}{c} 1.97 \times [0.21^2 + (6.4 \times 10^{-7} \text{L})^2]^{0.5}, \\ \text{L in mm} \end{array}$	μm
報告簽署人:	張明偉;張國明;陳文任	二; 蔡錦隆							
		自訂薄膜量測系統校正程序- X 射線儀 (文件編號: 07-3-95-0199)	1.5	nm	200	nm		0.02	nm
	: 林芳新; 張敬萱; 陳生珠 10 新竹縣竹東鎮中興路	耑;傅尉恩							
KA4009 薄膜厚度標		自訂薄膜量測系統校正程序-	1.5	nm	1000	nm		0.10	nm
	林芳新; 張敬萱; 陳生昭 10 新竹縣竹東鎮中興路		1						

項目代碼/	最高 工作標準件	校正方法		校』	E範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大 範圍	單位	說明	數值	單位
KA4010	標準直尺/Mitutoyo/	自訂二維影像標準校正	10×10	μm	1.0×1.0	mm	2-D	$[0.36^2 + (0.00166L)^2]^{0.5}$	μm
二維影像標	02ATL102	程序					(under Field of View)	L in mm	
準片		(文件編號: 07-3-98-5558)	1	mm	400	mm	1-D	$[0.36^2 + (0.00166L)^2]^{0.5}$	μm
		(2017)						L in mm	
			10×10	μm	400×400	mm	2-D (with Machine	$[0.77^2 + (0.00166L)^2]^{0.5}$	μm
							Motion)	L in mm	
报告簽署人:	張明偉;張國明;陳	文仁; 蔡錦隆							
KA4099	比表面積量測儀	自訂奈米粒子比表面積	3	m²/g	100	m²/g	氣體吸附 BET 法	2.8 (relative)	%
票準粒子比	/Micrometrics/	校正程序-氣體吸附							
表面積		(文件編號:	> 100	m²/g	600	m²/g	氣體吸附 BET 法	2.1 (relative)	%
		07-3-A3-0184)							
報告簽署人:	林芳新; 張敬萱; 陳								

電量

項目代碼/	最高 工作標準件	校正方法		校正氧	5 圍		量測條件		小定度
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大 範圍	單位	說明	數值	單位
KF1001	Datron 4910	自訂直流電壓系統	1	mV	1	mV		0.7	mV/V
直流電壓源		校正程序(文件編號:	10	mV	10	mV		0.07	mV/V
直流電壓表		07-3-76-0088)	100	mV	100	mV		7	μV/V
			1	V	1	V		0.8	μV/V
			10	V	10	V		0.4	μV/V
			100	V	100	V		0.7	μV/V
			1000	V	1000	V		6	μV/V
KF1001 直流電壓標準	Fluke /32A, /32B	目訂直流 I V-10 V 系統校正程序	1.018	V	1.018	V		0.3	μV/\ μV/\
KF1001	Fluke 732A, 732B	自訂直流 1 V-10 V	1	V	1	V		0.3	μV/V
器		(文件編號:	10	V	10	V		0.3	μV/V
交	(- (d) DD	07-3-82-0001)	10	V	10	V		0.3	μV/V
gg 犬 gg	午俊明; 陳士芳; 饒瑞	07-3-82-0001)	10	V	10	V		0.3	μV/V
器報告簽署人: 言		07-3-82-0001) 榮							
器 報告簽署人: 討 KF1002	KEITHLEY 6517A,	07-3-82-0001) 榮 自訂微電流系統校	10	pA	10	pA		0.9	mA/A
器 報告簽署人: 言 KF1002 直流微電流源	KEITHLEY 6517A,	07-3-82-0001) 榮		pA pA	10 100	pA pA		0.9	mA/A
器 報告簽署人: 言 KF1002 直流微電流源	KEITHLEY 6517A,	07-3-82-0001) 榮 自訂微電流系統校	10 100 1	pA pA nA	10 100 1	pA pA nA		0.9 0.47 0.26	mA/A mA/A mA/A
器 報告簽署人: 言 KF1002 直流微電流源	KEITHLEY 6517A,	07-3-82-0001) 榮 自訂微電流系統校 正程序	10 100 1 100	pA pA nA nA	10 100 1 100	pA pA nA nA		0.9 0.47 0.26 0.21	mA/A mA/A mA/A
交	KEITHLEY 6517A,	07-3-82-0001) 榮 自訂微電流系統校 正程序 (文件編號:	10 100 1	pA pA nA	10 100 1	pA pA nA		0.9 0.47 0.26	mA/A mA/A mA/A mA/A mA/A

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最不確	
校正件	廠牌/型號	文件名稱/編號	最小 範圍	單位	最大 範圍	單位	說明	數值	單位
KF1002	Guildline 9211A	自訂直流中電流系統	10	μΑ	10	μΑ		24	μA/A
直流電流分流器		校正程序(文件編號:	100	μA	100	μА		20	μA/A
直流電流表		07-3-86-0036)	1	mA	1	mA		20	μA/A
直流電流源			10	mA	10	mA		20	μA/A
			100	mA	100	mA		20	μA/A
			1	A	1	A		22	μA/A
			2	A	2	A		29	μA/A
			5	A	5	A		27	μA/A
			10	A	10	A		27	μA/A
			20	Α	20	A		61	μA/A
			50	A	50	A		58	μA/A
			100	A	100	A		58	μA/A
報告簽署人: 許俊明;	陳士芳; 饒瑞榮								
KF1003	EIS PARK	自訂直流高壓系統校	1	kV	200	kV		0.1	mV/V
直流高壓源		正程序(文件編號:							
直流高壓表		07-3-76-0081)							
直流高壓分壓器		, , , , , , , , , , , , , , , , , , , ,							
報告簽署人: 許俊明;	陳士芳; 饒瑞榮								
		T	300	A	300	A		0.36	mA/A
KF1004	H.TINSLEY 4638	自訂直流大電流系統	300	11	200			0.00	
KF1004 直流電流分流器 直流電流表	H.TINSLEY 4638	自訂直流大電流系統 校正程序(文件編號: 07-3-86-0056)	500	A	500	A		0.36	mA/A

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定度		
校正件	廠牌/型號	文件名稱/編號	最小 範圍	單位	最大 範圍	單位	說明	數值	單位	
KF1011	NML TVC	自訂交直流電壓轉換	0.2	V	0.2	V	@ 20 Hz	37	μV/V	
熱效電壓轉換器	NML μpot	校正程序(文件編號:	0.2	V	0.2	V	@ 40 Hz	75	μV/V	
交流低電壓標準件		07-3-81-0014)	0.2	V	0.2	V	@ 60 Hz	42	μV/V	
交流電壓源			0.2	V	0.2	V	@ 1 kHz	27	μV/V	
交流電壓表			0.2	V	0.2	V	@ 10 kHz	25	μV/V	
人がにも上水			0.2	V	0.2	V	@ 30 kHz	35	μV/V	
			0.2	V	0.2	V	@ 100 kHz	71	μV/V	
			0.2	V	0.2	V	@ 300 kHz	65	μV/V	
			0.2	V	0.2	V	@ 500 kHz	80	μV/V	
			0.2	V	0.2	V	@ 800 kHz	89	μV/V	
			0.2	V	0.2	V	@ 1 MHz	82	$\mu V/V$	
			0.5	V	0.5	V	@ 20 Hz	16	$\mu V/V$	
			0.5	V	0.5	V	@ 40 Hz to 1 kHz	11	μV/V	
			0.5	V	0.5	V	@ 10 kHz	10	μV/V	
			0.5	V	0.5	V	@ 30 kHz	11	$\mu V/V$	
			0.5	V	0.5	V	@ 100 kHz	15	μV/V	
			0.5	V	0.5	V	@ 300 kHz	27	μV/V	
			0.5	V	0.5	V	@ 500 kHz	42	μV/V	
			0.5	V	0.5	V	@ 800 kHz	53	μV/V	
			0.5	V	0.5	V	@ 1 MHz	64	μV/V	
			1	V	1	V	@ 20 Hz	13	μV/V	
			1	V	1	V	@ 40 Hz	9	μV/V	
			1	V	1	V	@ 60 Hz	8	μV/V	
			1	V	1	V	@ 1 kHz	9	$\mu V/V$	
			1	V	1	V	@ 10 kHz to 30 kHz	8	μV/V	
			1	V	1	V	@ 100 kHz	12	μV/V	

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件		小定度
校正件	廠牌/型號	文件名稱 /編號	最小 範圍	單位	最大 範圍	單位	說明	數值	單位
KF1011	NML TVC	自訂交直流電壓轉換	1	V	1	V	@ 300 kHz	23	μV/V
熱效電壓轉換器	NML μpot	校正程序(文件編號:	1	V	1	V	@ 500 kHz	37	μV/V
交流低電壓標準件		07-3-81-0014)	1	V	1	V	@ 800 kHz	47	μV/V
交流電壓源			1	V	1	V	@ 1 MHz	58	μV/\
交流電壓表			2	V	2	V	@ 20 Hz	11	μV/V
人派电压化			2	V	2	V	@ 40 Hz to 60 Hz	5	μV/\
			2	V	2	V	@ 1 kHz to 30 kHz	4	μV/\
			_ 2	V	2	V	@ 100 kHz	8	μV/V
			2	V	2	V	@ 300 kHz	18	μV/V
			2	V	2	V	@ 500 kHz	30	μV/V
			2	V	2	V	@ 800 kHz	40	μV/\
			2	V	2	V	@ 1 MHz	50	μV/V
			4	V	4	V	@ 20 Hz	13	μV/V
			4	V	4	V	@ 40 Hz to 60 Hz	9	μV/V
			4	V	4	V	@ 1 kHz to 30 kHz	8	μV/V
			4	V	4	V	@ 100 kHz	12	μV/V
			4	V	4	V	@ 300 kHz	23	μV/V
			4	V	4	V	@ 500 kHz	37	μV/\
			4	V	4	V	@ 800 kHz	47	μV/\
			4	V	4	V	@ 1 MHz	58	μV/\
			10	V	10	V	@ 20 Hz	19	μV/\
			10	V	10	V	@ 40 Hz to 30 kHz	12	μV/\
			10	V	10	V	@ 100 kHz	17	μV/\
			10	V	10	V	@ 300 kHz	31	μV/\
			10	V	10	V	@ 500 kHz	46	μV/V
			10	V	10	V	@ 800 kHz	58	$\mu V/V$

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最 不確	
校正件	廠牌/型號	文件名稱 /編號	最小 範圍	單位	最大 範圍	單位	說明	數值	單位
KF1011	NML TVC	自訂交直流電壓轉換	10	V	10	V	@ 1 MHz	70	μV/V
熱效電壓轉換器	NML μpot	校正程序(文件編號:	20	V	20	V	@ 20 Hz	21	μV/V
交流低電壓標準件		07-3-81-0014)	20	V	20	V	@ 40 Hz to 60 Hz	15	μV/V
交流電壓源			20	V	20	V	@ 1 kHz	14	μV/V
交流電壓表			20	V	20	V	@ 10 kHz to 30 kHz	15	μV/V
人 加电压化			20	V	20	V	@ 100 kHz	19	μV/V
			20	V	20	V	@ 300 kHz	34	μV/V
			20	V	20	V	@ 500 kHz	51	μV/V
			20	V	20	V	@ 800 kHz	63	μV/V
			20	V	20	V	@ 1 MHz	76	μV/V
			40	V	40	V	@ 20 Hz	24	μV/V
			40	V	40	V	@ 40 Hz to 30 kHz	17	μV/V
			40	V	40	V	@ 100 kHz	20	μV/V
			40	V	40	V	@ 300 kHz	37	μV/V
			100	V	100	V	@ 20 Hz	30	μV/V
			100	V	100	V	@ 40 Hz to 30 kHz	22	μV/V
				100	V	100	V	@ 100 kHz	29
			200	V	400	V	@ 20 Hz	45	μV/V
			200	V	400	V	@ 40 Hz to 30 kHz	36	μV/V
			200	V	400	V	@ 100 kHz	51	μV/V
			500	V	1000	V	@ 20 Hz	60	μV/V
			500	V	1000	V	@ 40 Hz to 10 kHz	52	μV/V
			500	V	1000	V	@ 30 kHz	59	μV/V
			100	mV	100	mV	@ 20 Hz	47	μV/V
			100	mV	100	mV	@ 40 Hz	80	μV/V
			100	mV	100	mV	@ 60 Hz	51	μV/V

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件		小 定度	
校正件	廠牌/型號	文件名稱/編號	最小 範圍	單位	最大 範圍	單位	說明	數值	單位	
KF1011	NML TVC	自訂交直流電壓轉換	100	mV	100	mV	@ 1 kHz	40	μV/V	
熱效電壓轉換器	NML μpot	校正程序(文件編號:	100	mV	100	mV	@ 10 kHz	38	μV/V	
交流低電壓標準件		07-3-81-0014)	100	mV	100	mV	@ 30 kHz	45	μV/V	
交流電壓源			100	mV	100	mV	@ 100 kHz	83	$\mu V/V$	
交流電壓表			100	mV	100	mV	@ 300 kHz	77	$\mu V/V$	
Jewe di I. V			100	mV	100	mV	@ 500 kHz	98	$\mu V/V$	
			100	mV	100	mV	@ 800 kHz to 1 MHz	0.12	mV/V	
			50	mV	50	mV	@ 20 Hz	55	μV/V	
			50	mV	50	mV	@ 40 Hz	85	μV/V	
			50	mV	50	mV	@ 60 Hz	58	μV/V	
			50	mV	50	mV	@ 1 kHz	49	μV/V	
			50	mV	50	mV	@ 10 kHz	48	μV/V	
			50	mV	50	mV	@ 30 kHz	53	μV/V	
			50	mV	50	mV	@ 100 kHz	93	μV/V	
			50	mV	50	mV	@ 300 kHz	88	μV/V	
		_		50	mV	50	mV	@ 500 kHz	0.12	mV/V
			50	mV	50	mV	@ 800 kHz	0.14	mV/V	
			50	mV	50	mV	@ 1 MHz	0.15	mV/V	
			20	mV	20	mV	@ 20 Hz	79	μV/V	
			20	mV	20	mV	@ 40 Hz	0.11	mV/V	
			20	mV	20	mV	@ 60 Hz	81	μV/V	
			20	mV	20	mV	@ 1 kHz	75	μV/V	
			20	mV	20	mV	@ 10 kHz	74	μV/V	
			20	mV	20	mV	@ 30 kHz	78	μV/V	
			20	mV	20	mV	@ 100 kHz	0.12	mV/V	
			20	mV	20	mV	@ 300 kHz	0.13	mV/V	

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件		小定度
校正件	廠牌/型號	文件名稱/編號	最小 範圍	單位	最大 範圍	單位	說明	數值	單位
KF1011	NML TVC	自訂交直流電壓轉換	20	mV	20	mV	@ 500 kHz	0.16	mV/V
熱效電壓轉換器	NML μpot	校正程序(文件編號:	20	mV	20	mV	@ 800 kHz	0.20	mV/V
交流低電壓標準件		07-3-81-0014)	20	mV	20	mV	@ 1 MHz	0.25	mV/V
交流電壓源			10	mV	10	mV	@ 20 Hz	97	μV/V
交流電壓表			10	mV	10	mV	@ 40 Hz	0.12	mV/V
2000 372 70			10	mV	10	mV	@ 60 Hz	99	$\mu V/V$
			10	mV	10	mV	@ 1 kHz	94	μV/V
			10	mV	10	mV	@ 10 kHz	93	μV/V
			10	mV	10	mV	@ 30 kHz	96	μV/V
			10	mV	10	mV	@ 100 kHz	0.14	mV/V
			10	mV	10	mV	@ 300 kHz	0.15	mV/V
			10	mV	10	mV	@ 500 kHz	0.20	mV/V
			10	mV	10	mV	@ 800 kHz	0.25	mV/V
			10	mV	10	mV	@ 1 MHz	0.32	mV/V
			5	mV	5	mV	@ 20 Hz	0.12	mV/V
			5	mV	5	mV	@ 40 Hz	0.14	mV/V
			5	mV	5	mV	@ 60 Hz	0.12	mV/V
			5	mV	5	mV	@ 1 kHz to 10 kHz	0.11	mV/V
			5	mV	5	mV	@ 30 kHz	0.12	mV/V
			5	mV	5	mV	@ 100 kHz	0.16	mV/V
			5	mV	5	mV	@ 300 kHz	0.18	mV/V
			5	mV	5	mV	@ 500 kHz	0.23	mV/V
			5	mV	5	mV	@ 800 kHz	0.28	mV/V
			5	mV	5	mV	@ 1 MHz	0.40	mV/V
			2	mV	2	mV	@ 20 Hz	0.13	mV/V
			2	mV	2	mV	@ 40 Hz	0.15	mV/V

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱 /編號	最小 範圍	單位	最大 範圍	單位	說明	數值	單位
KF1011	NML TVC	自訂交直流電壓轉換	2	mV	2	mV	@ 60 Hz to 30 kHz	0.13	mV/V
熱效電壓轉換器	NML µpot	校正程序(文件編號:	2	mV	2	mV	@ 100 kHz	0.18	mV/V
交流低電壓標準件		07-3-81-0014)	2	mV	2	mV	@ 300 kHz	0.20	mV/V
交流電壓源			2	mV	2	mV	@ 500 kHz	0.26	mV/V
交流電壓表			2	mV	2	mV	@ 800 kHz	0.32	mV/V
大阪も生化			2	mV	2	mV	@ 1 MHz	0.45	mV/V
			1	mV	1	mV	@ 20 Hz	0.17	mV/V
			_ 1	mV	1	mV	@ 40 Hz	0.18	mV/V
			1	mV	1	mV	@ 60 Hz	0.16	mV/V
			1	mV	1	mV	@ 1 kHz to 30 kHz	0.17	mV/V
			1	mV	1	mV	@ 100 kHz	0.20	mV/V
			1	mV	1	mV	@ 300 kHz	0.23	mV/V
			1	mV	1	mV	@ 500 kHz	0.29	mV/V
			1	mV	1	mV	@ 800 kHz	0.36	mV/V
			1	mV	1	mV	@ 1 MHz	0.50	mV/V
報告簽署人: 許俊明;	陳士芳; 饒瑞榮								
KF1012	Fluke A40B/	自訂交流電流量測系	100	μΑ	< 300	μΑ	@ 20 Hz to 10 kHz	0.12	mA/A
交流電流源	Fluke 5790B	統校正程序(文件編							
交流電流轉換放大器		號: 07-3-A6-0095)	200		100		O 20 H . 10 H	0.07	A / A
交流電流表			300	μΑ	100	Α	@ 20 Hz to 10 kHz	0.07	mA/A
交流電流分流器									
報告簽署人: 許俊明;	陳十芸· 饒 忠 巻								

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KF1012	NML 101, 115, 129, PTB/	自訂交直流電流轉換	1	mA	2.5	mA	@ 20 Hz to 10 kHz	18	μA/A
熱效電流轉換器	IPHT 227	校正程序(文件編號:	1	mA	2.5	mA	@ 20 kHz	24	μA/A
交流電流分流器		07-3-78-0026)	1	mA	2.5	mA	@ 50 kHz	40	μA/A
交流電流源		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	mA	2.5	mA	@ 100 kHz	50	μA/A
交流電流表			5	mA	5	mA	@ 20 Hz to 10 kHz	15	μA/A
入がにもがにな			5	mA	5	mA	@ 20 kHz	20	μA/A
			5	mA	5	mA	@ 50 kHz	26	μA/A
			5	mA	5	mA	@ 100 kHz	40	μA/A
			10	mA	10	mA	@ 20 Hz to 10 kHz	11	μA/A
			10	mA	10	mA	@ 20 kHz	15	μA/A
			10	mA	10	mA	@ 50 kHz	19	μA/A
			10	mA	10	mA	@ 100 kHz	24	μA/A
			20	mA	20	mA	@ 20 Hz to 10 kHz	15	μA/A
			20	mA	20	mA	@ 20 kHz	20	μA/A
			20	mA	20	mA	@ 50 kHz	26	μA/A
			20	mA	20	mA	@ 100 kHz	40	μA/A
			30	mA	30	mA	@ 20 Hz to 10 kHz	18	μA/A
			30	mA	30	mA	@ 20 kHz	24	μA/A
			30	mA	30	mA	@ 50 kHz	40	μA/A
			30	mA	30	mA	@ 100 kHz	50	μA/A
			50	mA	50	mA	@ 20 Hz to 10 kHz	22	μA/A
			50	mA	50	mA	@ 20 kHz	28	μA/A
			50	mA	50	mA	@ 50 kHz	40	μA/A
			50	mA	50	mA	@ 100 kHz	50	μA/A
			100	mA	100	mA	@ 20 Hz to 10 kHz	24	μA/A
			100	mA	100	mA	@ 20 kHz	40	μA/A

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KF1012	NML 101, 115, 129, PTB/	自訂交直流電流轉換	100	mA	100	mA	@ 50 kHz	50	μA/A
熱效電流轉換器	IPHT 227	校正程序(文件編號:	100	mA	100	mA	@ 100 kHz	60	μA/A
交流電流分流器		07-3-78-0026)	200	mA	200	mA	@ 20 Hz to 10 kHz	26	μA/A
交流電流源		,	200	mA	200	mA	@ 20 kHz	40	μA/A
交流電流表			200	mA	200	mA	@ 50 kHz	50	μA/A
Sevice Biviery			200	mA	200	mA	@ 100 kHz	60	μA/A
			300	mA	300	mA	@ 20 Hz to 10 kHz	28	μA/A
			300	mA	300	mA	@ 20 kHz	40	μA/A
			300	mA	300	mA	@ 50 kHz	50	μA/A
			300	mA	300	mA	@ 100 kHz	70	μA/A
			500	mA	500	mA	@ 20 Hz to 10 kHz	30	μA/A
			500	mA	500	mA	@ 20 kHz	50	μA/A
			500	mA	500	mA	@ 50 kHz	60	μA/A
			500	mA	500	mA	@ 100 kHz	70	μA/A
			1	A	1	A	@ 20 Hz to 10 kHz	40	μA/A
			1	A	1	Α	@ 20 kHz	50	μA/A
			1	A	1	A	@ 50 kHz	60	μA/A
			1	A	1	Α	@ 100 kHz	80	μA/A
			2	A	2	A	@ 20 Hz to 10 kHz	40	μA/A
			2	A	2	A	@ 20 kHz	50	μA/A
			2	A	2	A	@ 50 kHz	70	μA/A
			2	A	2	A	@ 100 kHz	80	μA/A
			3	A	3	A	@ 20 Hz to 10 kHz	40	μA/A
			3	A	3	A	@ 20 kHz	60	μA/A
			3	A	3	A	@ 50 kHz	70	μA/A
			3	A	3	A	@ 100 kHz	90	μA/A

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最 不確	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大 範圍	單位	說明	數值	單位
KF1012	NML 101, 115, 129, PTB/	自訂交直流電流轉換	5	Α	5	A	@ 20 Hz to 10 kHz	50	μA/A
熱效電流轉換器	IPHT 227	校正程序(文件編號:	5	Α	5	A	@ 20 kHz	60	μA/A
交流電流分流器		07-3-78-0026)	5	A	5	Α	@ 50 kHz	80	μA/A
交流電流源		,	5	A	5	A	@ 100 kHz	0.10	mA/A
交流電流表			10	A	10	A	@ 20 Hz to 10 kHz	50	μA/A
XIIIC & INCAC			10	A	10	A	@ 20 kHz	70	μA/A
			10	A	10	A	@ 50 kHz	80	μA/A
			10	A	10	A	@ 100 kHz	0.11	mA/A
			20	A	20	Α	@ 20 Hz to 10 kHz	60	μA/A
			20	A	20	Α	@ 20 kHz	70	μA/A
			20	A	20	Α	@ 50 kHz	90	μA/A
			20	A	20	A	@ 100 kHz	0.12	mA/A
			500	μA	500	μA	@ 20 Hz to 1 kHz	40	μA/A
			500	μA	500	μA	@ 5 kHz	40	μA/A
			500	μA	500	μA	@ 10 kHz	50	μA/A
			200	μA	200	μA	@ 20 Hz to 1 kHz	40	μA/A
			200	μA	200	μA	@ 5 kHz	40	μA/A
			200	μA	200	μA	@ 10 kHz	60	μA/A
			100	μA	100	μA	@ 20 Hz to 1 kHz	40	μA/A
			100	μA	100	μA	@ 5 kHz	50	$\mu A/A$
			100	μA	100	μA	@ 10 kHz	60	μA/A
			50	μA	50	μA	@ 20 Hz to 1 kHz	40	μA/A
			50	μA	50	μA	@ 5 kHz	50	μA/A
			50	μA	50	μA	@ 10 kHz	70	μA/A
			20	μA	20	μA	@ 20 Hz	60	μA/A
			20	μΑ	20	μΑ	@ 40 Hz to 1 kHz	50	μA/A

項目代碼/	最高 工作標準件	校正方法		校正	.範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KF1012	NML 101, 115, 129, PTB/	自訂交直流電流轉換	20	μΑ	20	μΑ	@ 5 kHz	70	μA/A
熱效電流轉換器	IPHT 227	校正程序(文件編號:	20	μA	20	μΑ	@ 10 kHz	90	μA/A
交流電流分流器		07-3-78-0026)	10	μA	10	μΑ	@ 20 Hz	70	μA/A
交流電流源			10	μA	10	μA	@ 40 Hz to 1 kHz	60	μA/A
交流電流表			10	μA	10	μΑ	@ 5 kHz	0.11	mA/A
			10	μA	10	μA	@ 10 kHz	0.25	mA/A
報告簽署人: 許俊明	;陳士芳;饒瑞榮								
KF1015	Josephson chip	自訂可編輯式約瑟夫	10	V	10	V		98	nV
直流電壓標準器 數位電壓表		森電壓量測系統校正 程序(文件編號:	1.018	V	1.018	V		50	nV
		位	1	V	1	V		50	nV
報告簽署人: 許俊明	;陳士芳;饒瑞榮								

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最不確?	-
校正件	廠牌/型號	文件名稱/編號	最小 範圍	單位	最大範圍	單位	說明	數值	單位
KF1016	Tettex-4764	自訂比流器量	5	A	5000	A	一次側額定電流 5 A to 5000 A, 二次側額定電流 1 A,	7.0E-05	
比流器		測系統校正程					5 A (@ 頻率 60 Hz)-變流比誤差		
交流電流轉換器		序(文件編號:	5	A	5000	Α	一次側額定電流 5 A to 5000 A, 二次側額定電流 1 A,	24	μrad
分流器		07-3-76-0083)					5 A (@ 頻率 60 Hz) -相角誤差		
			5	A	5000	Α	一次側額定電流 5 A to 5000 A, 二次側額定電流 1 A,	0.29	mV/V
							5 A (@ 頻率 60 Hz) -電壓		
報告簽署人: 許俊	き明; 陳士芳;	饒瑞榮							
						Δ			
	Tettex 4829	自訂比壓器量	1	kV	100	kV	一次側額定電壓 1 kV to 100 kV, 二次側額定電壓	8.2E-05	
比壓器		測系統校正程					10 V to 240 V (@ 頻率 60 Hz) -變壓比誤差		
交流電壓表		序(文件編號:	1	kV	100	kV	一次側額定電壓 1 kV to 100 kV, 二次側額定電壓	60	μrad
高壓衰減棒		07-3-76-0084)					10 V to 240 V (@ 頻率 60 Hz) -相角誤差		
比壓器測試器									
報告簽署人: 許俊	是明; 陳士芳;	饒瑞榮							

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	不	最小確定度
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KF2001	Radian RD-	自訂單相交流	1.1	W	4.8	W	(1) 單相有效電功率: 電壓 (110, 120, 220, 240, 480) V;	0.21	mW/W
單相交流	33-373	電功率量測系					電流 0.01 A; 功率因數 1; 頻率 (50, 60) Hz		
電功率源,		統校正程序	0.55	W	2.4	W	(1) 單相有效電功率: 電壓 (110, 120, 220, 240, 480) V;	0.41	mW/W
單相交流		(文件編號:					電流 0.01 A; 功率因數 0.5 Lead/Lag; 頻率 (50, 60) Hz		
電功率表,		07-3-A3-0312),	11	W	38.4	kW	(1) 單相有效電功率: 電壓 (110, 120, 220, 240, 480) V;	70	$\mu W/W$
單相交流		三相交流電功					電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 1;		
瓦特轉換		率量測系統校					頻率 (50, 60) Hz		
器,三相交		正程序	5.5	W	19.2	kW	(1) 單相有效電功率: 電壓 (110, 120, 220, 240, 480) V;	0.14	mW/W
流電功率		(文件編號:					電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 0.5 Lead/Lag;		
源,三相交		07-3-A4-0146)					頻率 (50, 60) Hz		
流電功率			1.1	var	4.8	var	(2) 單相無效電功率: 電壓 (110, 120, 220, 240, 480) V;	0.21	mvar/var
表							電流 0.01 A; 功率因數 0 Lead/Lag; 頻率 (50, 60) Hz		
			0.55	var	2.4	var	(2) 單相無效電功率: 電壓 (110, 120, 220, 240, 480) V;	0.41	mvar/var
							電流 0.01 A; 功率因數 0.866 Lead/Lag; 頻率 (50, 60) Hz		
			11	var	38.4	kvar	(2) 單相無效電功率: 電壓 (110, 120, 220, 240, 480) V;	70	μvar/var
							電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 0 Lead/Lag;		
							頻率 (50, 60) Hz		
			5.5	var	19.2	kvar	(2) 單相無效電功率: 電壓 (110, 120, 220, 240, 480) V;	0.14	mvar/var
							電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 0.866 Lead/Lag;		
							頻率 (50, 60) Hz		
			2.2	V	22	V	(3) 電壓諧波: 基波電壓 (110, 220) V; (諧波/基波) 比	0.31	mV/V
							(2, 10) %; 基頻 (50, 60) Hz; 諧波次 2, 3, 5, 10		
			2.2	V	22	V	(3) 電壓諧波: 基波電壓 (110, 220) V; (諧波/基波) 比	0.63	mV/V
							(2, 10)%; 基頻 (50, 60) Hz; 諧波次 20, 30, 40, 50, 64		

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	不	最小 確定度
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KF2001 單相交流	Radian RD- 33-373	自訂單相交流 電功率量測系	0.02	A	1	A	(4) 電流諧波: 基波電流: (1, 2, 5, 10) A; (諧波/基波) 比 (2, 10) %; 基頻 (50, 60) Hz; 諧波次 2, 3, 5, 10	0.24	mA/A
電功率源, 單相交流		統校正程序 (文件編號:	0.02	A	1	A	(4) 電流諧波: 基波電流: (1, 2, 5, 10) A; (諧波/基波) 比 (2, 10) %; 基頻 (50, 60) Hz; 諧波次 20, 30, 40, 50, 64	0.48	mA/A
電功率表, 單相交流		07-3-A3-0312), 三相交流電功	3.3	W	14.4	W	(1) 三相有效電功率: 電壓 (110, 220, 480) V; 電流 0.01 A; 功率因數 1; 頻率 (50, 60) Hz	0.21	mW/W
瓦特轉換 器,三相交		率量測系統校 正程序	1.65	W	7.2	W	(1) 三相有效電功率: 電壓 (110, 220, 480) V; 電流 0.01 A; 功率因數 0.5 Lead/Lag; 頻率 (50, 60) Hz	0.41	mW/W
流電功率 源, 三相交		(文件編號: 07-3-A4-0146)	33	W	115.2	kW	(1) 三相有效電功率: 電壓 (110, 220, 480) V; 電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 1; 頻率 (50, 60) Hz	70	μW/W
流電功率表			16.5	W	57.6	kW	(1) 三相有效電功率: 電壓 (110, 220, 480) V; 電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 0.5 Lead/Lag; 頻率 (50, 60) Hz	0.14	mW/W
			3.3	var	14.4	var	(2) 三相無效電功率: 電壓 (110, 220, 480) V; 電流 0.01 A; 功率因數 0 Lead/Lag; 頻率 (50, 60) Hz	0.21	mvar/va
			1.65	var	7.2	var	(2) 三相無效電功率: 電壓 (110, 220, 480) V; 電流 0.01 A; 功率因數 0.866 Lead/Lag; 頻率 (50, 60) Hz	0.41	mvar/va
			33	var	115.2	kvar	(2) 三相無效電功率: 電壓 (110, 220, 480) V; 電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 0 Lead/Lag; 頻率 (50, 60) Hz	70	μvar/var
		上 · 益 · 改	16.5	var	57.6	kvar	(2) 三相無效電功率: 電壓 (110, 220, 480) V; 電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 0.866 Lead/Lag; 頻率 (50, 60) Hz	0.14	mvar/va

報告簽署人: 許俊明; 陳士芳; 饒瑞榮

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	不	最小 確定度
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KF2002	Radian RD-	自訂單相交流	0.037	Wh	0.16	Wh	(1) 單相有效電能: 電壓 (110, 120, 220, 240, 480) V;	0.24	mWh/Wh
單相交流	33-373	電能量測系統					電流 0.01 A; 功率因數 1; 頻率 (50, 60) Hz; 時間 2 分鐘		
電能表,單		校正程序	0.018	Wh	0.08	Wh	(1) 單相有效電能: 電壓 (110, 120, 220, 240, 480) V;	0.47	mWh/Wh
相交流瓦		(文件編號:					電流 0.01 A; 功率因數 0.5 Lead/Lag; 頻率 (50, 60) Hz;		
時轉換器,		07-3-A3-0313),					時間 2 分鐘		
三相交流		自訂三相交流	0.367	Wh	1.28	kWh	(1) 單相有效電能: 電壓 (110, 120, 220, 240, 480) V;	0.10	mWh/Wh
電能表		電能量測系統					電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 1;		
		校正程序					頻率 (50, 60) Hz; 時間 2 分鐘		
		(文件編號:	0.183	Wh	640	Wh	(1) 單相有效電能: 電壓 (110, 120, 220, 240, 480) V;	0.19	mWh/Wh
		07-3-A4-0148)					電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 0.5 Lead/Lag;		
							頻率 (50, 60) Hz; 時間 2 分鐘		
			0.037	varh	0.16	varh	(2) 單相無效電能: 電壓 (110, 120, 220, 240, 480) V;	0.24	mvarh/varh
							電流 0.01 A; 功率因數 0 Lead/Lag; 頻率 (50, 60) Hz;		
							時間2分鐘		
			0.018	varh	0.08	varh	(2) 單相無效電能: 電壓 (110, 120, 220, 240, 480) V;	0.47	mvarh/varh
							電流 0.01 A; 功率因數 0.866 Lead/Lag;		
							頻率 (50, 60) Hz; 時間 2 分鐘		
			0.367	varh	1.28	kvarh	(2) 單相無效電能: 電壓 (110, 120, 220, 240, 480) V;	0.10	mvarh/varh
							電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 0 Lead/Lag;		
							頻率 (50, 60) Hz; 時間 2 分鐘		
			0.183	varh	640	varh	(2) 單相無效電能: 電壓 (110, 120, 220, 240, 480) V;	0.19	mvarh/varh
							電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 0.866 Lead/Lag;		
							頻率 (50, 60) Hz; 時間 2 分鐘		

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	不	最小 確定度
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KF2002	Radian RD-	自訂單相交流	0.11	Wh	0.48	Wh	(1) 三相有效電能: 電壓 (110, 220, 480) V; 電流 0.01 A;	0.24	mWh/Wh
單相交流	33-373	電能量測系統					功率因數 1; 頻率 (50, 60) Hz; 時間 2 分鐘		
電能表,		校正程序	0.055	Wh	0.24	Wh	(1) 三相有效電能: 電壓 (110, 220, 480) V; 電流 0.01 A;	0.47	mWh/Wh
單相交流		(文件編號:					功率因數 0.5 Lead/Lag; 頻率 (50, 60) Hz; 時間 2 分鐘		
瓦時轉換		07-3-A3-0313),	1.1	Wh	3.84	kWh	(1) 三相有效電能: 電壓 (110, 220, 480) V;	0.10	mWh/Wh
器,三相		自訂三相交流					電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 1;		
交流電能		電能量測系統					頻率 (50, 60) Hz; 時間 2 分鐘		
表		校正程序	0.55	Wh	1.92	kWh	(1) 三相有效電能: 電壓 (110, 220, 480) V;	0.19	mWh/Wh
		(文件編號:					電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 0.5 Lead/Lag;		
		07-3-A4-0148)					頻率 (50, 60) Hz; 時間 2 分鐘		
			0.11	varh	0.48	varh	(2) 三相無效電能: 電壓 (110, 220, 480) V; 電流 0.01 A;	0.24	mvarh/var
							功率因數 0 Lead/Lag; 頻率 (50, 60) Hz; 時間 2 分鐘		
			0.055	varh	0.24	varh	(2) 三相無效電能: 電壓 (110, 220, 480) V; 電流 0.01 A;	0.47	mvarh/varl
							功率因數 0.866 Lead/Lag; 頻率 (50, 60) Hz; 時間 2 分鐘		
			1.1	varh	3.84	kvarh	(2) 三相無效電能: 電壓 (110, 220, 480) V;	0.10	mvarh/varl
							電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 0 Lead/Lag;		
							頻率 (50, 60) Hz; 時間 2 分鐘		
			0.55	varh	1.92	kvarh	(2) 三相無效電能: 電壓 (110, 220, 480) V;	0.19	mvarh/varl
							電流 (0.1, 1, 5, 10, 50, 80) A; 功率因數 0.866 Lead/Lag;		
							頻率 (50, 60) Hz; 時間 2 分鐘		

報告簽署人: 許俊明; 陳士芳; 饒瑞榮

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件		小定度
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KF2003	Clarke Hess/	自訂相位角量	90	0	90	0	@ 電壓值 5 V (@ 60 Hz, 400 Hz, 1 kHz, 10 kHz, 50 kHz)	0.02	0
相位計	5500	測系統校正程	180	0	180	0	@ 電壓值 5 V (@ 60 Hz, 400 Hz, 1 kHz, 10 kHz, 50 kHz)	0.02	0
相位產生器		序(文件編號:	180	0	180	0	@ 電壓值 50 V (@ 60 Hz, 400 Hz)	0.02	0
		07-3-76-0085)	180	0	180	0	@ 電壓值 100 V (@ 60 Hz, 400 Hz)	0.02	0
報告簽署人: 討	午俊明; 陳士芳; 自	 曉瑞榮							
KF3001	Guildline 9330,	自訂直流高電	1	ΜΩ	1	ΜΩ		9	μΩ/Ω
直流高電阻器	MI 4310HR	阻量測系統校	10	$M\Omega$	10	ΜΩ		11	$\mu\Omega/\Omega$
直流高電阻表		正程序	100	ΜΩ	100	ΜΩ		15	$\mu\Omega/\Omega$
多功能電表		(文件編號:	1	GΩ	1	GΩ			$\mu\Omega/\Omega$
多功能校正器		07-3-76-0086)	10	GΩ	10	GΩ			$\mu\Omega/\Omega$
十進電阻器		,	100	GΩ	100	GΩ			$\mu\Omega/\Omega$
			1	ΤΩ	1	TΩ		73	$\mu\Omega/\Omega$
報告簽署人: 討	午俊明; 陳士芳; 自				<u> </u>				
VIE 2001		1, 2, 5,		1.0		1.0		0.04	0 / 0
KF3001	Quantized Hall	自訂量化霍爾	1	kΩ	1	kΩ		0.06	$\mu\Omega/\Omega$
直流標準電阻	Resistance	電阻標準系統							
器		校正程序							
		(文件編號:							
		07-3-89-0053)							

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件		b小 雀定度
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KF3001	LN4221, LN4222,	自訂直流電阻	0.1	mΩ	0.1	$m\Omega$	@ < 100 A	0.7	μΩ/Ω
直流標準電阻器		系統校正程序	0.1	mΩ	0.1	$m\Omega$	@ 100 A to 1000 A	35	$\mu\Omega/\Omega$
多功能電表	3220KD, LN4210,	(文件編號:	0.001	Ω	0.001	Ω		2.7	μΩ/Ω
多功能校正器	LN4214, Tinsley	07-3-84-0042)	0.01	Ω	0.01	Ω		0.7	μΩ/Ω
十進電阻器	5685A, Tinsley		0.1	Ω	0.1	Ω		0.7	μΩ/Ω
	5685B, Guildline 9330		1	Ω	1	Ω		0.16	μΩ/Ω
	9330		10	Ω	10	Ω		0.16	μΩ/Ω
			100	Ω	100	Ω		0.16	μΩ/Ω
			10	kΩ	10	kΩ		0.15	μΩ/Ω
			100	kΩ kΩ	100	kΩ kΩ		0.15	μΩ/Ω
報告簽署人: 許修			100	KSZ	100	K22		0.10	μ32/32
KF3002	GR 1482-B,	自訂電感量測	100	μН	100	μН	@ 頻率 100 Hz	1.2	mH/H
標準電感器,	GR 1482-E,	系統校正程序	1	mН	1	mH	@ 頻率 100 Hz	0.22	mH/H
阻抗表	GR 1482-H,	(文件編號:	10	mН	10	mН	@ 頻率 100 Hz	0.22	mH/E
	GR 1482-L,	07-3-76-0090)	100	mН	100	mН	@ 頻率 100 Hz	0.22	mH/H
	GR 1482-P, GR 1482-T		1	Н	1	Н	@ 頻率 100 Hz	0.22	mH/H
	OK 1402-1		10	Н	10	Н	@ 頻率 100 Hz	0.22	mH/H
			100	μН	100	μН	@ 頻率 1 kHz	1.2	mH/H
			1	mH	1	mН	@ 頻率 1 kHz	0.22	mH/H
			10	mН	10	mН	@ 頻率 1 kHz	0.22	mH/H
			100	mН	100	mН	@ 頻率 1 kHz	0.22	mH/H
			1	Н	1	Н	@ 頻率 1 kHz	0.52	mH/H

最高 工作標準件	校正方法		校正	範圍		量測條件		t小 崔定度
廠牌/型號	文件名稱/編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
GR 1482-B, GR 1482-E, GR 1482-H, GR 1482-L, GR 1482-P, GR 1482-T	自訂電感量測 系統校正程序 (文件編號: 07-3-76-0090)	10	Н	10	Н	@ 頻率 1 kHz	2.0	mH/H
俊明;陳士芳;饒瑞榮								
GR 1404-A	自訂阻抗標準 追溯系統(電 容標準追溯至 電阻標準) 校正程序 (文件編號: 07-3-93-0054)	1 10 100 1000 1 10 100 1000	pF pF pF pF pF pF	1 10 100 1000 1 10 100 1000	pF pF pF pF pF pF	 @ 頻率 1000 Hz @ 頻率 1000 Hz @ 頻率 1000 Hz @ 頻率 1000 Hz @ 頻率 1592 Hz @ 頻率 1592 Hz @ 頻率 1592 Hz @ 頻率 1592 Hz 	0.58 0.55 0.56 0.56 0.25 0.22 0.21 0.20	μF/F μF/F μF/F μF/F μF/F μF/F μF/F
俊明;陳士芳;饒瑞榮								
AH 11A, GR 1404A	自訂電容量測 系統校正程序 -1 kHz 電容標 準 (文件編號: 07-3-84-0076)	0.001 0.01 0.1 1	μF μF μF μF pF	0.001 0.01 0.1 1 1	μF μF μF μF pF	@頻率1kHz 雨端點@頻率1kHz 雨端點@頻率1kHz 雨端點@頻率1kHz 雨端點@頻率1kHz 三端點	0.56 60 30 70 2 0.9	mF/F μF/F μF/F μF/F μF/F
	工作標準件 廠牌/型號 GR 1482-B, GR 1482-E, GR 1482-H, GR 1482-P, GR 1482-T 逻明; 陳士芳; 饒瑞榮 GR 1404-A	工作標準件	工作標準件 校正方法 廠牌/型號 文件名稱 /編號 最小 範圍 GR 1482-B, GR 1482-E, GR 1482-H, GR 1482-P, GR 1482-P, GR 1482-T (文件編號: 07-3-76-0090) 07-3-76-0090) Ø明;陳士芳;饒瑞榮 自訂阻抗標準 1 1000 1000 校正程序 (文件編號: 07-3-93-0054) 100 1000 後明;陳士芳;饒瑞榮 10 1000 後明;陳士芳;饒瑞榮 10 1000 後明;陳士芳;饒瑞榮 10 0.001 各H 11A, GR 1404A 自訂電容量測 系統校正程序 -1 kHz 電容標 (文件編號: 0.01 0.01 非(文件編號: 1 0.01	工作標準件 校正方法 校正方法 校正方法 校正方法 校正 廠牌/型號 文件名稱 /編號 最小 範圍 單位 GR 1482-B, GR 1482-E, GR 1482-H, GR 1482-P, GR 1482-T (文件編號: 07-3-76-0090) 10 中F 该明;陳士芳;饒瑞榮 自訂阻抗標準 1 pF 100 pF 1000 pF	工作標準件 校正方法 校正範圍 廠牌/型號 文件名稱 /編號 最小 範圍 單位 最大 範圍 GR 1482-B, GR 1482-E, GR 1482-L, GR 1482-P, GR 1482-T 自訂電感量測 (文件編號: (文件編號: (文件編號: (文件編號: (文件編號: (文件編號: (文件編號: (文件編號: (文件編號: (大件編號: (大件編號: (大件編號: (大件編號: (大件編號: (大件編號: (大件編號: (大戶) 1 pF 1 (大戶) 100 pF 1000 (大戶) 整明;陳士芳;饒瑞榮 100 pF 1000 (大戶) 100 pF 1000 (大戶) 100 pF 1000 (大戶) 100 pF 1000 (大戶) 整明;陳士芳;饒瑞榮 1 pF 1 (大戶) 100 pF 1000 (大戶) 100 pF 1000 (大戶) 100 pF 1000 (大戶) 100 pF 1000 (大戶) 2 (大戶) 1 pF 1 (大戶) 1 pF 1 (大戶) 1 pF 1 (大戶) 1 pF 1 (大戶) 1 pF 1 (大戶)	工作標準件 校正方法 校正範圍 文件名稱 最小 單位 最大 範圍 單位 範圍 單位 範圍 單位 範圍 単位 単位 範圍 単位 単位 範圍 単位 単位 範圍 単位 単位 単位 単位 単位 単位 単位 単	工作標準件 校正方法 校正範圍 量測條件 廠牌/型號 文件名稱 /編號 最小 範圍 單位 說明 GR 1482-B, GR 1482-E, GR 1482-H, GR 1482-L, GR 1482-P, GR 1482-T 自訂匯抗標準 追溯系統(電 1 pF 1 pF @頻率 1000 Hz 该明;陳士芳;饒瑞榮 1 pF 1 pF @頻率 1000 Hz 宣灣標準 10 pF 10 pF @頻率 1000 Hz 空標準追溯至電測標準 100 pF 100 pF @頻率 1000 Hz 空間標準 1000 pF 1000 pF @頻率 1000 Hz 支上程序(文件編號: 07-3-93-0054) 1 pF 1 pF @頻率 1592 Hz 変明;陳士芳;饒瑞榮 AH 11A, GR 1404A 自訂電容量測 系統校正程序 -1 kHz 電容標 -1 kHz 電容標 -1 kHz 電容標 -1 kHz 電容標 -1 kHz 雨端點 0.001 μF 0.001 μF @頻率 1 kHz 雨端點 -2 (文件編號: -1 kHz 雨端點 AH 11A, GR 1404A 自訂電容量測 系統技正程序 -1 kHz 高容標 -1 kHz 雨端點 0.01 μF 0.01 μF @頻率 1 kHz 雨端點 -2 (文件編號: -1 μF 0.1 μF 0.01 μF @頻率 1 kHz 雨端點 -2 (文件編號: -2	工作標準件 校正方法 校正範圍 量測條件 不確 嚴厚/型號 文件名稱 編示 整個 最大 範圍 單位 最大 範圍 說明 數值 GR 1482-B, GR 1482-E, GR 1482-H, GR 1482-H, GR 1482-H, GR 1482-H, GR 1482-P, GR 1482-T (文件編號: 07-3-76-0090) 日 訂阻抗標準

校正件	最小 不確定度
標準電容器, 電容電橋, 阻抗表	值 單位
電容電橋, 阻抗表 1 kHz 電容標	7 μF/I
阻抗表	$\mu F/1$
100 pF 100 pF	$0 \mu F/1$
1000 pF 1000 pF	0 μF/1
0.01 μF 0.01 μF @ 頻率 1 kHz 四端點對 3 0.1 μF 0.1 μF 0.1 μF @ 頻率 1 kHz 四端點對 3 1 μF 1 μF 0 0 0 1 1 1 1 1 1 1	$0 \mu F/1$
0.1 μF 0.1 μF @ 頻率 1 kHz 四端點對 3 1 μF 1 μF 0 頻率 1 kHz 四端點對 7 報告簽署人: 許俊明; 陳士芳; 饒瑞榮 KF3006 Guildline 9330, 自訂片電阻系 0.15 Ω 4000 Ω 0.4000 Ω	$0 \mu F/1$
1 μF 1 μF @ 頻率 1 kHz 四端點對 7 報告簽署人: 許俊明; 陳士芳; 饒瑞榮 KF3006 Guildline 9330, 自訂片電阻系 0.15 Ω 4000 Ω 0.4000 Ω	$0 \mu F/1$
報告簽署人: 許俊明; 陳士芳; 饒瑞榮 KF3006 Guildline 9330, 自訂片電阻系 0.15 Ω 4000 Ω 0.4000 Ω	$0 \mu F/1$
KF3006 Guildline 9330, 自訂片電阻系 0.15 Ω 4000 Ω 0.4000 Ω	$0 \mu F/1$
	16 %
矽片電阻標準 HP 34420A 統校正程序	
(文件編號:	
07-3-90-0055)	
報告簽署人: 許俊明; 陳士芳; 饒瑞榮	

校正場地: 310 新竹縣竹東鎮中興路四段 195 號

電磁量

項目代碼/	最高 工作標準件	校正方法		校正	- 範圍		量測條件		小定度
校正件	廠牌/型號		最小 範圍	單位	最大 範圍	單位	說明	數值	單位
KG1001 微波功率計	HP8478B/ HP11683	自訂微波功率計 校正程序	1	mW	1	mW	Power Reference: 頻率 50 MHz	0.51	%
		(文件編號: 07-3-80-0009)	-25	dBm	20	dBm	Power Range	0.28	%
報告簽署人: 許修	度明; 陳士芳;	饒瑞榮							
KG1001	HP8478B	自訂微波功率感	0.8		1		Thermistor Mount: 功率 1 mW 頻率 10 MHz	1.7	%
微波功率感測器		測器校正程序	0.8		1		Thermistor Mount: 功率 1 mW 頻率 50 MHz	1.2	%
		(文件編號:	0.8		1		Thermistor Mount: 功率 1 mW 頻率 51 MHz to 4 GHz	1.5	%
		07-3-82-0093)	0.8		1		Thermistor Mount: 功率 1 mW 頻率 4001 MHz to 8 GHz	1.8	%
			0.8		1		Thermistor Mount: 功率 1 mW 頻率 8001 MHz to 18 GHz	2.6	%
			0.8		1		Power Sensor: 功率 1 mW 頻率 10 MHz	1.7	%
			0.8		1		Power Sensor: 功率 1 mW 頻率 50 MHz	1.3	%
			0.8		1		Power Sensor: 功率 1 mW 頻率 51 MHz to 4 GHz	1.6	%
			0.8		1		Power Sensor: 功率 1 mW 頻率 4001 MHz to 8 GHz	1.8	%
			0.8		1		Power Sensor: 功率 1 mW 頻率 8001 MHz to 18 GHz	2.6	%
			0.8		1		Power Sensor with 30 dB Pad: 功率 1 μW 頻率 10 MHz	2.0	%
			0.8		1		Power Sensor with 30 dB Pad: 功率 1 μW 頻率 50 MHz	1.7	%
			0.8		1		Power Sensor with 30 dB Pad: 功率 1 μW 頻率 51 MHz to 4 GHz	1.9	%

項目代碼/	最高 工作標準件	校正方法		校正	.範圍		量測條件	最小 不確定	
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大 範圍	單位	說明	數值	單位
KG1001 微波功率感測器	HP8478B	自訂微波功率 感測器校正程	0.8		1		Power Sensor with 30 dB Pad: 功率 1 μW 頻率 4001 MHz to 8 GHz	2.1	%
		序(文件編號: 07-3-82-0093)	0.8		1		Power Sensor with 30 dB Pad: 功率 1 μW 頻率 8001 MHz to 18 GHz	3.0	%
報告簽署人: 許俊日	明;陳士芳;饒瑞榮								
KG1002 短路器, 開路器,	HP/85055-60003 HP/85055-60004	自訂微波散射 參數及阻抗系	0		1		反射係數 Type N: @ 10 MHz to 500 MHz	0.0054 (linear)	
終端器,不匹配器,	HP/85053-60001	統網路元件校	0	0	180	0	反射係數 Type N: @ 10 MHz to 500 MHz	1.0	0
微波空氣線, 衰減器,微波元件	HP/85053-60002	正程序 (文件編號:	0		1		反射係數 Type N: @ > 500 MHz to 2 GHz	0.0054 (linear)	
12 mg BB , PR 12 7 0 1 1		07-3-80-0076)	0	0	180	0	反射係數 Type N: @ > 500 MHz to 2 GHz	1.0	0
		07-3-80-0070)	0		1		反射係數 Type N: @ > 2 GHz to 18 GHz	0.0058 (linear)	
			0	0	180	0	反射係數 Type N: @ > 2 GHz to 18 GHz	1.1	0
			0		1		反射係數 3.5 mm: @ 10 MHz to 45 MHz	0.0048 (linear)	
			0	0	180	0	反射係數 3.5 mm: @ 10 MHz to 45 MHz	1.1	0
			0		1		反射係數 3.5 mm: @ > 45 MHz to 2 GHz	0.0048 (linear)	
			0	0	180	0	反射係數 3.5 mm: @ > 45 MHz to 2 GHz	1.1	0
			0		1		反射係數 3.5 mm: @ > 2 GHz to 20 GHz	0.0080 (linear)	
			0	0	180	0	反射係數 3.5 mm: @ > 2 GHz to 20 GHz	2.3	0

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定	
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大 範圍	單位	說明	數值	單位
KG1002 短路器, 開路器,	HP/85055-60003 HP/85055-60004	自訂微波散射 參數及阻抗系	0		1		反射係數 3.5 mm: @ > 20 GHz to 26.5 GHz	0.0084 (linear)	
終端器,不匹配器,	HP/85053-60001	統網路元件校	0	0	180	0	反射係數 3.5 mm: @ > 20 GHz to 26.5 GHz	2.4	0
微波空氣線, 衰減器,微波元件	HP/85053-60002	正程序 (文件編號:	0		1		反射係數 2.92 mm: @ 45 MHz to 2 GHz	0.018 (linear)	
1000 BB; PROX 1011		07-3-80-0076)	0	0	180	0	反射係數 2.92 mm: @ 45 MHz to 2 GHz	2.9	0
		07-3-00-0070)	0		1		反射係數 2.92 mm: @ > 2 GHz to 26.5 GHz	0.009 (linear)	
			0	0	180	0	反射係數 2.92 mm: @ > 2 GHz to 26.5 GHz	1.6	0
			0		1		反射係數 2.92 mm: @ > 26.5 GHz to 40 GHz	0.018 (linear)	
			0	0	180	0	反射係數 2.92 mm: @ > 26.5 GHz to 40 GHz	2.9	0
			> -20	dB	0	dB	透射係數 Type N: @ 10 MHz to 500 MHz	0.048	dB
			0	0	180	0	透射係數 Type N: @ 10 MHz to 500 MHz	0.4	0
			> -40	dB	-20	dB	透射係數 Type N: @ 10 MHz to 500 MHz	0.049	dB
			0	0	180	0	透射係數 Type N: @ 10 MHz to 500 MHz	0.4	0
			-60	dB	-40	dB	透射係數 Type N: @ 10 MHz to 500 MHz	0.059	dB
			0	0	180	0	透射係數 Type N: @ 10 MHz to 500 MHz	0.4	0
			> -20	dB	0	dB	透射係數 Type N: @ > 500 MHz to 2 GHz	0.048	dB
			0	0	180	0	透射係數 Type N: @ > 500 MHz to 2 GHz	0.4	0
			> -40	dB	-20	dB	透射係數 Type N: @ > 500 MHz to 2 GHz	0.049	dB
			0	0	180	0	透射係數 Type N: @ > 500 MHz to 2 GHz	0.4	0
			-60	dB	-40	dB	透射係數 Type N: @ > 500 MHz to 2 GHz	0.059	dB
			0	0	180	0	透射係數 Type N: @ > 500 MHz to 2 GHz	0.5	0

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定																					
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大 範圍	單位	說明	數值	單位																				
KG1002	HP/85055-60003	自訂微波散射	> -20	dB	0	dB	透射係數 Type N: @ > 2 GHz to 18 GHz	0.025	dB																				
, ,	HP/85055-60004	參數及阻抗系	0	0	180	0	透射係數 Type N: @ > 2 GHz to 18 GHz	1.1	0																				
終端器,不匹配器,	HP/85053-60001	統網路元件校	> -40	dB	-20	dB	透射係數 Type N: @ > 2 GHz to 18 GHz	0.025	dB																				
微波空氣線,	HP/85053-60002	正程序	0	0	180	0	透射係數 Type N: @ > 2 GHz to 18 GHz	1.4	0																				
衰減器,微波元件		(文件編號:	-60	dB	-40	dB	透射係數 Type N: @ > 2 GHz to 18 GHz	0.025	dB																				
		07-3-80-0076)	0	0	180	0	透射係數 Type N: @ > 2 GHz to 18 GHz	1.6	0																				
			> -20	dB	0	dB	透射係數 3.5 mm: @ 10 MHz to 45 MHz	0.11	dB																				
			0	0	180	0	透射係數 3.5 mm: @ 10 MHz to 45 MHz	0.7	0																				
			> -40	dB	-20	dB	透射係數 3.5 mm: @ 10 MHz to 45 MHz	0.14	dB																				
			0	0	180	0	透射係數 3.5 mm: @ 10 MHz to 45 MHz	0.9	0																				
			-60	dB	-40	dB	透射係數 3.5 mm: @ 10 MHz to 45 MHz	0.22	dB																				
			0	0	180	0	透射係數 3.5 mm: @ 10 MHz to 45 MHz	1.4	0																				
			> -20	dB	0	dB	透射係數 3.5 mm: @ > 45 MHz to 2 GHz	0.068	dB																				
			0	0	180	0	透射係數 3.5 mm: @ > 45 MHz to 2 GHz	0.5	0																				
			> -40	dB	-20	dB	透射係數 3.5 mm: @ > 45 MHz to 2 GHz	0.11	dB																				
			0	0	180	0	透射係數 3.5 mm: @ > 45 MHz to 2 GHz	0.8	0																				
																							-60	dB	-40	dB	透射係數 3.5 mm: @ > 45 MHz to 2 GHz	0.26	dB
			0	0	180	0	透射係數 3.5 mm: @ > 45 MHz to 2 GHz	1.7	0																				
			> -20	dB	0	dB	透射係數 3.5 mm: @ > 2 GHz to 20 GHz	0.17	dB																				
			0	0	180	0	透射係數 3.5 mm: @ > 2 GHz to 20 GHz	1.0	0																				
			> -40	dB	-20	dB	透射係數 3.5 mm: @ > 2 GHz to 20 GHz	0.21	dB																				
			0	0	180	0	透射係數 3.5 mm: @ > 2 GHz to 20 GHz	1.4	0																				
			-60	dB	-40	dB	透射係數 3.5 mm: @ > 2 GHz to 20 GHz	0.23	dB																				

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定																				
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大 範圍	單位	說明	數值	單位																			
KG1002	HP/85055-60003	自訂微波散射	0	0	180	0	透射係數 3.5 mm: @ > 2 GHz to 20 GHz	1.6	0																			
	HP/85055-60004	參數及阻抗系	> -20	dB	0	dB	透射係數 3.5 mm: @ > 20 GHz to 26.5 GHz	0.20	dB																			
終端器,不匹配器,	HP/85053-60001	統網路元件校	0	0	180	0	透射係數 3.5 mm: @ > 20 GHz to 26.5 GHz	1.3	0																			
微波空氣線,	HP/85053-60002	正程序	> -40	dB	-20	dB	透射係數 3.5 mm: @ > 20 GHz to 26.5 GHz	0.25	dB																			
衰減器,微波元件		(文件編號:	0	0	180	0	透射係數 3.5 mm: @ > 20 GHz to 26.5 GHz	1.6	0																			
		07-3-80-0076)	-60	dB	-40	dB	透射係數 3.5 mm: @ > 20 GHz to 26.5 GHz	0.28	dB																			
			0	0	180	0	透射係數 3.5 mm: @ > 20 GHz to 26.5 GHz	1.8	0																			
			> -20	dB	0	dB	透射係數 2.92 mm: @ 45 MHz to 2 GHz	0.11	dB																			
			0	0	180	0	透射係數 2.92 mm: @ 45 MHz to 2 GHz	0.8	0																			
			> -40	dB	-20	dB	透射係數 2.92 mm: @ 45 MHz to 2 GHz	0.11	dB																			
			0	0	180	0	透射係數 2.92 mm: @ 45 MHz to 2 GHz	0.8	0																			
			-60	dB	-40	dB	透射係數 2.92 mm: @ 45 MHz to 2 GHz	0.13	dB																			
			0	0	180	0	透射係數 2.92 mm: @ 45 MHz to 2 GHz	0.9	0																			
			> -20	dB	0	dB	透射係數 2.92 mm: @ > 2 GHz to 26.5 GHz	0.047	dB																			
			0	0	180	0	透射係數 2.92 mm: @ > 2 GHz to 26.5 GHz	2.4	0																			
																						> -40	dB	-20	dB	透射係數 2.92 mm: @ > 2 GHz to 26.5 GHz	0.047	dB
																							0	0	180	0	透射係數 2.92 mm: @ > 2 GHz to 26.5 GHz	2.4
			-60	dB	-40	dB	透射係數 2.92 mm: @ > 2 GHz to 26.5 GHz	0.047	dB																			
									0	0	180	0	透射係數 2.92 mm: @ > 2 GHz to 26.5 GHz	2.4	0													
			> -20	dB	0	dB	透射係數 2.92 mm: @ > 26.5 GHz to 40 GHz	0.093	dB																			
			0	0	180	0	透射係數 2.92 mm: @ > 26.5 GHz to 40 GHz	3.6	0																			
			> -40	dB	-20	dB	透射係數 2.92 mm: @ > 26.5 GHz to 40 GHz	0.093	dB																			
			0	0	180	0	透射係數 2.92 mm: @ > 26.5 GHz to 40 GHz	3.7	0																			

校正件				校正氧	記 国		量測條件	不確定	上度
	廠牌/型號	文件名稱/編號	最小範圍	單位	最大 範圍	單位	說明	數值	單位
	HP/85055-60003	自訂微波散射	-60	dB	-40	dB	透射係數 2.92 mm: @ > 26.5 GHz to 40 GHz	0.093	dB
	IP/85055-60004	參數及阻抗系							
TT	HP/85053-60001	統網路元件校							
微波空氣線, H	HP/85053-60002	正程序	0	0	180	0	透射係數 2.92 mm: @ > 26.5 GHz to 40 GHz	5.2	0
衰減器,微波元件		(文件編號:							
		07-3-80-0076)							
報告簽署人: 許俊明;	;陳士芳;饒瑞榮								
				\mathcal{I}					
	AR TC 3020A/	自訂橫電磁波	1	V/m	200	V/m	場強度@ 100 kHz to 500 MHz	0.77	dB
電磁場強度計 A	AR TC 1510A	室電磁場強度							
		量測系統校正							
		程序							
		(文件編號:							
		07-3-84-0121)							
報告簽署人: 許俊明;	; 陳士芳; 饒瑞榮								
KG1005 N	Varda EF1891/	自訂電波暗室	1	V/m	100	V/m	場強度@ 0.5 GHz to 0.55 GHz	0.85	dB
電磁場強度計,微 N	NBM-550,	電磁場強度量							
11X 1X 1111 11 11 11X	chwarzBeck	測系統校正程	1	V/m	100	V/m	場強度@ > 0.55 GHz to 1 GHz	0.71	dB
	BBHA9120E/	序(文件編號:	1	V/m	200	V/m	場強度@>1 GHz to 8 GHz	0.68	dB
В	BBHA9120B	07-3-84-0125)	1	V / 111	200	V / 111	物 独及 W > I UNZ W O UNZ	0.08	ub
報告簽署人: 許俊明;		/				ı l			_

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小不確定	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KG2001 探索線圏	Agilent/34970A, SRS/SR620	自訂探索線圈校正 程序(文件編號: 07-3-83-0049)	0.001	m²	1	m²	面積圈數: (turns)	0.27	%
報告簽署人: 許	俊明;陳士芳;饒王	端榮							
KG2001 磁通計	Agilent/34970A, SRS/SR620	自訂磁通計校正程序(文件編號:	0.0001 > 0.001	Wb Wb	0.001	Wb Wb		0.15 0.16	%
報生答罢人· 許	 後明; 陳士芳; 饒 []]	07-3-81-0017)	> 1	Wb	2	Wb		0.13	%
机 · 放 · 以 · 以 · 以 · 以 · 以 · 以 · 以 · 以 · 以									
KG2002	HP 3457A	自訂交流磁場	0.5	μТ	1	μΤ	磁通密度 @ 50 Hz	0.62	%
高斯計,磁力計,		(50 Hz 至 1000 Hz)	> 1	μТ	3	μΤ	磁通密度 @ 50 Hz	0.44	%
標準參考磁鐵		校正系統校正程序	> 3	μТ	5	μΤ	磁通密度 @ 50 Hz	0.42	%
		(文件編號:	> 5	μΤ	10	μΤ	磁通密度 @ 50 Hz	0.18	%
		07-3-97-1288)	> 10	μТ	30	μТ	磁通密度 @ 50 Hz	0.50	%
			> 30	μТ	50	μΤ	磁通密度 @ 50 Hz	0.44	%
			0.5	μТ	1	μΤ	磁通密度 @ 51 Hz to 100 Hz	0.53	%
			> 1	μТ	3	μΤ	磁通密度 @ 51 Hz to 100 Hz	0.19	%
			> 3	μТ	5	μΤ	磁通密度 @ 51 Hz to 100 Hz	0.32	%
			> 5	μТ	10	μТ	磁通密度 @ 51 Hz to 100 Hz	0.27	%
			> 10	μТ	30	μТ	磁通密度 @ 51 Hz to 100 Hz	0.27	%
			> 30	μТ	50	μТ	磁通密度 @ 51 Hz to 100 Hz	0.28	%
			0.5	μТ	1	μΤ	磁通密度 @ 101 Hz to 300 Hz	0.34	%
			> 1	μТ	3	μТ	磁通密度 @ 101 Hz to 300 Hz	0.27	%

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小不確定	
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KG2002	HP 3457A	自訂交流磁場	> 3	μТ	5	μТ	磁通密度 @ 101 Hz to 300 Hz	0.32	%
高斯計,磁力計,		(50 Hz 至 1000 Hz)	0.5	μТ	1	μТ	磁通密度 @ 301 Hz to 1000 Hz	0.26	%
標準參考磁鐵		校正系統校正程序(文件編號:	> 1	μТ	3	μТ	磁通密度 @ 301 Hz to 1000 Hz	0.44	%
		07-3-97-1288)	> 3	μТ	5	μТ	磁通密度 @ 301 Hz to 1000 Hz	0.30	%
報告簽署人: 許/	俊明; 陳士芳; 饒	瑞榮		'					
KG2002	HP 34970A	自訂低磁場	1	μТ	5	μТ	磁通密度	0.74	%
高斯計,磁力計,		(1 µT 至 1 mT)	> 5	μТ	10	μT	磁通密度	0.43	%
標準參考磁鐵		校正系統校正程序	> 10	μΤ	30	μТ	磁通密度	0.40	%
		(文件編號:	> 30	μT	50	μT	磁通密度	0.44	%
		07-3-84-0081)	> 50	μT	100	μT	磁通密度	0.35	%
			> 100	μТ	150	μΤ	磁通密度	0.50	%
			> 150	μΤ	300	μТ	磁通密度	0.40	%
			> 300	μΤ	500	μТ	磁通密度	0.36	%
			> 500	μΤ	1000	μТ	磁通密度	0.35	%
報告簽署人: 許公	俊明; 陳士芳; 饒	瑞榮							
KG2002	HP 34970A	自訂低磁場	1	mT	50	mT	磁通密度	0.38	%
高斯計,磁力計,		(1 mT 至 50 mT)							
標準參考磁鐵		校正系統校正程序							
		(文件編號:							
		07-3-81-0011)							
報告簽署人: 許	俊明; 陳士芳; 饒	瑞榮							

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最大不確定	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KG2002	SRS/SR620	自訂高斯計校正程	0.05	Т	1.5	Т	磁通密度	0.01	%
高斯計,磁力計,		序(文件編號:							
標準參考磁鐵		07-3-86-0071)							
報告簽署人: 許	俊明; 陳士芳; 饒王	瑞榮 二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二							
KG2002	SRS/SR620	自訂標準參考磁鐵	0.05	Т	1.5	Т	磁通密度	0.01	%
高斯計,磁力計,		校正程序						3.00	,
標準參考磁鐵		(文件編號:							
		07-3-81-0021)							
報告簽署人: 許	俊明; 陳士芳; 饒雪	/							
KG3001	CMS/V (\lambda) W02	自訂絕對輻射系統	25	lx	100	lx l		0.81	%
照度計	CIVIS/ V (A) WOZ	照度計校正程序	23	1A	100	1A		0.01	/0
///X =		(文件編號:	> 100	lx	1500	lx		1.1	%
		07-3-80-0086)	> 100	IA	1300	1A		1.1	/0
報生签署人·吳									
和 日 效 有 八 . 六	只肥,肚 丘条,不								
KG3002	Optronic	自訂分光輻射系統	5	cd/m²	50000	cd/m²		1.6	%
亮度計	Laboratories/	亮度色度計校正程							
	455-6-2	序(文件編號:							
		07-3-80-0085)							
報告簽署人: 吳	貴能;莊宜蓁;陳山	攻憲							

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KG3003	CSIR AR-1100	自訂絕對輻射系統	70	cd	10000	cd		0.72	%
光強度標準燈		校正程序							
		(文件編號:							
		07-3-83-0023)							
報告簽署人: 吳	貴能;莊宜蓁;陳」	/		l	I.				
KG3003	CMS/V (λ) W02	自訂絕對輻射系統	25	cd	1500	cd		0.77	%
光強度標準燈		照度計校正程序							
		(文件編號:	> 1500	cd	90000	cd		1.2	%
		07-3-80-0086)							
報告簽署人: 吳	貴能;莊宜蓁;陳述	攻憲							
KG3005	Cary 5000	自訂分光測色系統	1	%	< 10	%	分光穿透率, 波長: 200 nm to 800 nm	0.06	%
濾片		穿透率校正程序	10	%	100	%	分光穿透率, 波長: 200 nm to 800 nm	0.21	%
		(文件編號:	1	%	< 10	%	穿透率	0.05	%
		07-3-95-0053)	10	%	100	%	穿透率	0.20	%
報告簽署人: 吳	貴能;莊宜蓁;陳」	 攻憲							
THE DATE OF THE PROPERTY OF TH	X 70, 71 - X , 1910	77,0							
KG3006	Cary 5000	自訂分光測色系統	1	%	100	%	波長: 250 nm to 2500 nm	0.14	%
中性分光反射	,	鏡面反射校正程序							
片		(文件編號:							
		07-3-93-0232)							
報告簽署人: 吳	貴能;莊宜蓁;陳」			l .	l				

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定	
校正件	廠牌/型號	文件名稱/編號	最小 範圍	單位	最大範圍	單位	說明	數值	單位
KG3006	BRDF	自訂光散射量測系	0	0	0	0	分光輻射亮度因子, 波長: 380 nm to 800 nm	0.0056	
反射片		統校正程序	-45	0	< 0	0	分光輻射亮度因子, 波長: 380 nm to 800 nm	0.0058	
		(文件編號:	>0	0	45	0	分光輻射亮度因子, 波長: 380 nm to 800 nm	0.0058	
		07-3-96-0191)	-60	0	<-45	0	分光輻射亮度因子, 波長: 380 nm to 800 nm	0.0059	
			> 45	0	60	0	分光輻射亮度因子, 波長: 380 nm to 800 nm	0.0059	
			> 10				@ (0°: 45°a), 輻射亮度因子	0.16	
KG3008	L1/CRYORAD/	自訂低溫絕對輻射	280	nm	< 290	nm		3.1	%
報告簽署人	: 吳貴能; 莊宜蓁	;陳政憲							
矽光偵測器		系統分光光輻射功	290	nm	< 300	nm		2.7	%
7 7 6 17 (1 1 1		率響應校正程序	300	nm	< 480	nm		0.59	%
		(文件編號:	480	nm	1030	nm		0.38	%
		07-3-94-0034)	> 1030	nm	1100	nm		0.56	%
報告簽署人	: 吳貴能; 莊宜蓁								
//	717(112) // 2 //								
KG3008	CMS/Si R01	自訂分光輻射系統	300	nm	< 410	nm	相對分光響應	2.0	%
矽光偵測器		光偵測器分光響應	410	nm	< 480	nm	相對分光響應	0.87	%
		校正程序	480	nm	< 930	nm	相對分光響應	0.58	%
		(文件編號:	930	nm	1100	nm	相對分光響應	1.1	%
		07-3-91-0088)	300	nm	< 380	nm	分光響應	1.8	%
			380	nm	< 540	nm	分光響應	0.98	%
			540	nm	< 930	nm	分光響應	0.44	%

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定	
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KG3008 矽光偵測器	CMS/Si R01	自訂分光輻射系統 光偵測器分光響應	930	nm	< 1050	nm	分光響應	0.81	%
		校正程序 (文件編號: 07-3-91-0088)	1050	nm	1100	nm	分光響應	1.9	%
報告簽署人	: 吳貴能; 莊宜蓁								
KG3008	CMS/V (λ) R01	自訂分光輻射系統	380	nm	< 440	nm	相對分光響應	0.0010	
視效函數光		光偵測器分光響應	440	nm	< 500	nm	相對分光響應	0.0040	
偵測器		校正程序	500	nm	< 610	nm	相對分光響應	0.0068	
		(文件編號:	610	nm	< 660	nm	相對分光響應	0.0049	
		07-3-91-0088)	660	nm	< 710	nm	相對分光響應	0.0016	
			710	nm	780	nm	相對分光響應	0.0003	
報告簽署人	: 吳貴能; 莊宜蓁	;陳政憲							
KG3008	L1/CRYORAD/	自訂低溫絕對輻射系統分光光輻射功	800	nm	< 900	nm		2.1	%
盆光值测笑	700107		900	nm	1540	nm		0.36	%
鍺光偵測器		率響應校正程序	, , ,						

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KG3008	CMS/GE/ITEG1	自訂分光輻射系統光偵測器分光響應	800	nm	< 870	nm	分光響應	3.2	%
鍺光偵測		校正程序(文件編號: 07-3-91-0088)	870	nm	< 1590	nm	分光響應	1.2	%
器, 砷化鎵 銦光偵測器			1590	nm	1650	nm	分光響應	1.7	%
	: 吳貴能; 莊宜蓁; 陳	政憲							
11.00000		1		***			1.5 1010		0.1
KG3009 光纖功率計	ILXLightwave/	自訂絕對輻射系統光纖功率計校正程	1	μW	1	mW	波長: 1310 nm	0.9	%
九銀切平司	82103608/ 821A030F	序(文件編號: 07-3-95-0051)	1	μW	1	mW	波長: 1550 nm	0.9	%
報告簽署人	: 吳貴能; 莊宜蓁; 陳	政憲							
KG3014			(0, 0)		(1 1)		() 00, 450-	(0.0002.0.0004)	
KG3014 反射片		自訂光散射量測系統校正程序 (文件編號: 07-3-96-0191)	(0,0)		(1, 1)		(x, y) 0°: 45°a	(0.0003, 0.0004)	
報告簽署人	: 吳貴能;莊宜蓁; 陳	,							
KG3014	OPAL GLASS	自訂分光測色系統 0°: 45°a 幾何條件	(0,0)		(1, 1)		(x, y) 白板	(0.0003, 0.0004)	
		校正程序(文件編號: 07-3-93-0202)	(0, 0)		(1, 1)		0°: 45°a	(0.0003, 0.0001)	
	Spectralon	per 12,7 (52.1)	(0, 0)		(1, 1)		(x, y) 色板,	(0.0007, 0.0004)	
	7A11E-4258/ Sphere-Optics						0°: 45°a 紅		
	SG3049/CCSII		(0, 0)		(1, 1)		(x, y) 色板	(0.0006, 0.0005)	
	Series II AB95						0°: 45°a, 綠		
			(0,0)		(1, 1)		(x, y) 色板	(0.0004, 0.0006)	
							0°: 45°a, 藍		

項目代碼/	最高 工作標準件	校正方法		校正氧	範圍		量測條件	最小 不確定歷	支
校正件	廠牌/型號	文件名稱 /編號	最小 範圍	單位	最大 範圍	單位	說明	數值	單位
KG3014	OPAL GLASS	自訂分光測色系	>1				CIELAB 座標 L* 白板 0°: 45°a	0.15	
白板, 色板	GA90, FZ90,	統 0°: 45°a 幾何	> 1				CIELAB 座標 L* 色板 0°: 45°a, 紅	0.24	
	AE95/Spectralon 7A11E-4258/	條件校正程序	> 1				CIELAB 座標 L* 色板 0°: 45°a, 綠	0.21	
	Sphere Ontics	(文件編號:	>1				CIELAB 座標 L* 色板 0°: 45°a, 藍	0.29	
	SG3049/CCSII	07-3-93-0202)	(-500, -200)		(500, 200)		(a*, b*) 白板 0°: 45°a	(0.20, 0.19)	
	Series II AB95		(-500, -200)		(500, 200)		(a*, b*) 色板 0°: 45°a, 紅	(0.63, 0.72)	
			(-500, -200)		(500, 200)		(a*, b*) 色板 0°: 45°a, 綠	(0.57, 0.44)	
			(-500, -200)		(500, 200)		(a*, b*) 色板 0°: 45°a, 藍	(0.97, 0.97)	
			> 1				輻射亮度因子, 白板 0°: 45°a	0.34	
			> 0.01				分光輻射亮度因子, 白板 0°: 45°a,	0.0069	
							波長: 380 nm to 780 nm		
			> 1				輻射亮度因子, 色板 0°: 45°a, 紅	0.18	
			> 1				輻射亮度因子, 色板 0°: 45°a, 綠	0.20	
			> 1				輻射亮度因子, 色板 0°: 45°a, 藍	0.18	
報告簽署人	: 吳貴能; 莊宜蓁	;陳政憲							
	OPAL GLASS GA90, FZ90,	自訂分光測色系 統標準色板	(0, 0)		(1, 1)		(x, y) 白板 de: 8°	(0.0002, 0.0003)	
	AE95/Spectralon 7A11E-4258/	de: 8°幾何條件 校正程序	(0,0)		(1, 1)		(x, y) 色板 de: 8°, 紅	(0.0028, 0.0024)	
	Sphere-Optics SG3049/CCSII	(文件編號:	(0,0)		(1, 1)		(x, y) 色板 de: 8°, 綠	(0.0007, 0.0005)	
	Series II AB95	07-3-84-0150)	(0, 0)		(1, 1)		(x, y) 色板 de: 8°, 藍	(0.0007, 0.0007)	

項目代碼/	最高 工作標準件	校正方法		校正章	範圍		量測條件	最小 不確定原	英
校正件	廠牌/型號	文件名稱 /編號	最小 範圍	單位	最大範圍	單位	說明	數值	單位
	OPAL GLASS	自訂分光測色系	1		100		CIELAB 座標 L* 白板 de: 8°	0.14	
白板, 色板	GA90, FZ90,	統標準色板	1		100		CIELAB 座標 L* 色板 de: 8°, 紅	0.20	
	AE95/Spectralon	de: 8°幾何條件	1		100		CIELAB 座標 L* 色板 de: 8°, 綠	0.17	
	7A11E-4258/ Sphere-Optics	校正程序	1		100		CIELAB 座標 L* 色板 de: 8°, 藍	0.30	
	SG3049/CCSII	(文件編號:	(-500, -200)		(500, 200)		(a*, b*) 白板 de: 8°	(0.11, 0.09)	
	Series II AB95	07-3-84-0150)	(-500, -200)		(500, 200)		(a*, b*) 色板 de: 8°, 紅	(0.42, 0.51)	
			(-500, -200)		(500, 200)		(a*, b*) 色板 de: 8°, 綠	(0.38, 0.36)	
			(-500, -200)		(500, 200)		(a*, b*) 色板 de: 8°, 藍	(0.73, 0.59)	
白板	GA90, FZ90,	自訂分光測色系 統標準白板	(0, 0)		(1, 1)		(x, y) 白板 0°: de	(0.0002, 0.0002)	
	AE95/Spectralon 7A11E-4258/	0°: de 及 8°: de 幾何條件校正程	1	A	100		CIELAB 座標 L* 白板 0°: de	0.14	
	3013049	序(文件編號: 07-3-82-0064)	(-500, -200)		(500, 200)		(a*, b*) 白板 0°: de	(0.10, 0.08)	
報告簽署人	: 吳貴能; 莊宜蓁	;陳政憲							
	NPL FEL/	自訂分光輻射通	(0, 0)		(0.9, 0.9)		(x, y)	(0.0008, 0.0006)	
	BN-9101-482	量標準燈校正程							

項目代碼/	最高 工作標準件	校正方法		校	正範圍		量測條件	最小 不確定度	
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大 範圍	單位	說明	數值	單位
KG3015	Sphere Optics/LR-6-Z,	自訂分光輻射系統分光輻射儀校	(0, 0)		(0.9, 0.9)		(x, y)	(0.0011, 0.0009)	
分光輻射儀	Optronic Laboratories/455-6-2	正程序(文件編號: 07-3-91-0087)	(0, 0)		(0.62, 0.39)		(u, v)	(0.0004, 0.0004)	
報告簽署人: 吳	音能;莊宜蓁;陳政憲								
KG3015	KONICA MINOLTA/	自訂分光輻射系統分光輻射亮度	(0, 0)		(0.9, 0.9)		(x, y)	(0.0011, 0.0009)	
近標準 A 光源		標準燈校正程序 (文件編號: 07-3-89-0074)	(0, 0)		(0.62, 0.39)		(u, v)	(0.0004, 0.0004)	
報告簽署人: 吳	長貴能;莊宜蓁;陳政憲								
KG3015	Optronic Laboratories/	自訂分光輻射系統亮度色度計校	(0, 0)		(0.9, 0.9)		(x, y)	(0.0011, 0.0009)	
亮度色度計	455-6-2	正程序(文件編號: 07-3-80-0085)	(0, 0)		(0.62, 0.39)		(u, v)	(0.0004, 0.0004)	
報告簽署人: 吳	及貴能;莊宜蓁;陳政憲								
KG3015	OSRAM/64743	自訂發光二極體分光輻射光譜校	(0, 0)		(0.9, 0.9)		(x, y) 白光	(0.0047, 0.0055)	
發光二極體	1000W/IW08	正程序(文件編號: 07-3-95-0130)	(0, 0)		(0.9, 0.9)		(x, y) 紅光	(0.0039, 0.0032)	
報告簽署人: 吳	异貴能;莊宜蓁;陳政憲								
校正場地: 300	新竹市大學路 30 號								
KG3015	CMS/V (λ) W02	自訂絕對輻射系統照度計校正程	(0, 0)		(0.9, 0.9)		(x, y)	(0.0012, 0.0007)	
照度計, 光強度標準燈		序 (文件編號: 07-3-80-0086)	(0, 0)		(0.9, 0.9)		(u, v)	(0.0008, 0.0003)	
	· 号貴能;莊宜蓁;陳政憲					l l			

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最不確定	
校正件	廠牌/型號	文件名稱/編號	最小 範圍	單位	最大 範圍	單位	說明	數值	單位
	OPAL GLASS GA90,	自訂分光測色	1		100		反射因子, 白板 de: 8°	0.16	
白板, 色板	FZ90, AE95/	系統標準色板	0.01		1		分光反射因子, 白板 de: 8°, 波長: 400 nm to 750 nm	0.0030	,
	Spectralon 7A11E-4258/	de: 8°幾何條	1		100		反射因子, 色板 de: 8°, 紅	0.18	
	Sphere-Optics SG3049/ CCSII Series II AB95	件校正程序	1		100		反射因子, 色板 de: 8°, 綠	0.18	
	CCSII Series II AB93	(文件編號: 07-3-84-0150)	1		100		反射因子, 色板 de: 8°, 藍	0.17	
報告簽署人	: 吳貴能; 莊宜蓁; 陳政								
					Δ				
	OPAL GLASS GA90,	自訂分光測色	1		100		反射因子, 白板 0°: de	0.16	
白板	FZ90, AE95/	系統標準白板							
	Spectralon 7A11E-4258/	0°: de 及 8°: de			\mathbf{A}				
	Sphere-Optics SG3049	幾何條件校正 程序	0.01		1		分光反射因子, 白板 0°: de, 波長: 380 nm to 780 nm	0.0032	
		(文件編號:							
		07-3-82-0064)							
報告簽署人	: 吳貴能; 莊宜蓁; 陳政	憲							
KG3018	NPL FEL/BN-9101-482	自訂分光輻射	2800	K	3400	K		15	K
分光輻射	THE TELEBRIT FIRST TOP	通量標準燈校	2000	17	3 100	11		13	17
通量標準		正程序							
燈		(文件編號:							
,		07-3-A1-0073)							
報告簽署人	· 、 吳貴能; 莊宜蓁; 陳政								

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最不確定	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KG3018 分光輻射儀	Sphere Optics/ LR-6-Z, Optronic Laboratories/ 455-6-2	自訂分光輻射系統分光輻射儀校正程序 (文件編號: 07-3-91-0087)	2500	K	3200	K		8	K
報告簽署人	: 吳貴能; 莊宜蓁; 陳政憲								
KG3018 近標準 A 光源	KONICA MINOLTA/CS-2000	自訂分光輻射系統分光輻射亮度標準燈校正程序 (文件編號: 07-3-89-0074)	2500	K	3200	K		8	K
報告簽署人	: 吳貴能; 莊宜蓁; 陳政憲			•					
KG3018 亮度色度計	Optronic Laboratories/455-6-2	自訂分光輻射系統亮度色 度計校正程序 (文件編號: 07-3-80-0085)	2500	K	3200	K		8	K
報告簽署人	: 吳貴能; 莊宜蓁; 陳政憲								
KG3018 照度計,光 強度標準燈	CMS/V (λ) W02	自訂絕對輻射系統照度計 校正程序 (文件編號: 07-3-80-0086)	2500	K	3200	K		29	K
報告簽署人	: 吳貴能; 莊宜蓁; 陳政憲							1	
KG3020 光偵測器, 光功率計	CSIR AR-1100	自訂絕對輻射系統校正程 序 (文件編號: 07-3-83-0023)	6	μW	100	mW	波長: 300 nm to 9000 nm, 輻射功率響應, 可見光	0.30	%

文件名稱 /編號 自訂絕對輻射系統校正程序 (文件編號: 07-3-83-0023)	最小 範圍 6	單位	最大範圍	單位	상마	由/ /上	
	6		即归	十世	說明	數值	單位
(>21) (30)		μW	100	mW	波長: 300 nm to 9000 nm, 輻射功率響應, 其他波段	0.54	%
陳政憲			•				
		T .					
	70	lx	10000	lx	照度絕對響應	0.68	%
陳政憲							
白訂絕對輻射系統光輻射校	50	uW/cm²	150	mW/cm²	250 nm ≤ 波長 < 300 nm.	5.5	%
	A	pr v v o m	100	111 () () () ()		0.0	,,
(文件編號: 07-3-85-0069)	50	μW/cm ²	150	mW/cm ²	300 nm ≤ 波長 ≤ 3000 nm,	3.0	%
					輻射照度計,寬波段光源		
	50	μW/cm ²	150	mW/cm ²	250 nm ≤ 波長 < 350 nm,	6.2	%
					輻射照度計, 窄波段光源		
	50	$\mu W/cm^2$	150	mW/cm ²	$350 \text{ nm} \leq 波長 \leq 500 \text{ nm},$	4.2	%
					輻射照度計, 窄波段光源		
	50	μW/cm ²	150	mW/cm ²		3.3	%
			0				
	50	μW/cm ²	150	mW/cm ²		5.4	%
	50		150	W//on-2		2.0	0/
	30	μw/cm ²	130	m w/cm ²		2.9	%
	陳政憲 自訂絕對輻射系統校正程序 (文件編號: 07-3-83-0023) 陳政憲 自訂絕對輻射系統光輻射校 正程序	陳政憲	陳政憲 自訂絕對輻射系統校正程序 (文件編號: 07-3-83-0023) 70 Ix 康政憲 自訂絕對輻射系統光輻射校正程序 (文件編號: 07-3-85-0069) 50 μW/cm² 50 μW/cm² 50 μW/cm² 50 μW/cm² 50 μW/cm²	陳政憲 10000 自訂絕對輻射系統校正程序 (文件編號: 07-3-83-0023) 70 Ix 10000 陳政憲 50 μW/cm² 150 上程序 (文件編號: 07-3-85-0069) 50 μW/cm² 150 50 μW/cm² 150 50 μW/cm² 150 50 μW/cm² 150 50 μW/cm² 150	陳政憲 自訂絕對輻射系統校正程序 (文件編號: 07-3-83-0023) 70 lx 10000 lx 陳政憲 自訂絕對輻射系統光輻射校 正程序 (文件編號: 07-3-85-0069) 50 μW/cm² 150 mW/cm² 50 μW/cm² 150 mW/cm² 50 μW/cm² 150 mW/cm² 50 μW/cm² 150 mW/cm² 50 μW/cm² 150 mW/cm²	陳政憲 自訂絕對輻射系統校正程序 (文件編號: 07-3-83-0023) 70 1x 10000 1x 照度絕對響應 陳政憲 自訂絕對輻射系統光輻射校 正程序 (文件編號: 07-3-85-0069) 50 μW/cm² 150 mW/cm² 250 nm ≤ 波長 < 300 nm, 輻射照度計,寬波段光源 300 nm ≤ 波長 ≤ 3000 nm, 輻射照度計,寬波段光源 50 50 μW/cm² 150 mW/cm² 250 nm ≤ 波長 < 350 nm, 輻射照度計,窄波段光源 50 50 μW/cm² 150 mW/cm² 350 nm ≤ 波長 ≤ 500 nm, 輻射照度計,窄波段光源 50 50 μW/cm² 150 mW/cm² 500 nm < 波長 ≤ 3000 nm, 輻射照度計,窄波段光源 50 50 μW/cm² 150 mW/cm² 250 nm ≤ 波長 < 3000 nm, 素納射照度計,窄波段光源 50 50 μW/cm² 150 mW/cm² 250 nm ≤ 波長 < 3000 nm, 光源輻射照度,寬波段光源 50 50 μW/cm² 150 mW/cm² 250 nm ≤ 波長 < 3000 nm, 光源輻射照度,寬波段光源 50	申訂絕對輻射系統校正程序

項目代碼/	最高 工作標準件	校正方法		校正道	範圍		量測條件	最不確	
校正件	廠牌/型號	文件名稱 /編號		單位	最大範圍	單位	說明	數值	單位
KG3021 輻射照度	CSIR AR-1100	自訂絕對輻射系統光輻射 校正程序	50	μW/cm²	150	mW/cm²	250 nm ≤ 波長 < 350 nm, 光源輻射照度, 窄波段光源	6.2	%
計,光源		(文件編號: 07-3-85-0069)	50	μW/cm²	150	mW/cm²	7.	4.2	%
			50	μW/cm²	150	mW/cm²	500 nm < 波長 ≦ 3000 nn, 光源輻射照度, 窄波段光源	3.3	%
報告簽署ノ	人: 吳貴能; 莊宜蓁;	陳政憲							
KG3022	Sphere Optics/	自訂分光輻射系統分光輻	2	$\mu W/(nm \cdot sr \cdot m^2)$	2	$W/(nm \cdot sr \cdot m^2)$	380 nm ≦ 波長 < 390 nm	3.8	%
分光輻射	LR-6-Z, Optronic	自訂分光輻射系統分光輻 射儀校正程序	2 2	$\mu W / (nm \cdot sr \cdot m^2)$ $\mu W / (nm \cdot sr \cdot m^2)$	2	$W/(nm \cdot sr \cdot m^2)$ $W/(nm \cdot sr \cdot m^2)$	380 nm ≤ 波長 < 390 nm 390 nm ≤ 波長 < 420 nm	3.8	%
分光輻射	LR-6-Z, Optronic Laboratories/			• ` `		` ,			
分光輻射	LR-6-Z, Optronic	射儀校正程序	2	$\mu W/(nm \cdot sr \cdot m^2)$	2	$W/(nm \cdot sr \cdot m^2)$	390 nm ≦ 波長 < 420 nm	2.8	%
分光輻射 儀	LR-6-Z, Optronic Laboratories/	射儀校正程序 (文件編號: 07-3-91-0087)	2 2	$\frac{\mu W/(nm\cdot sr\cdot m^2)}{\mu W/(nm\cdot sr\cdot m^2)}$	2 2	$\frac{W/(nm \cdot sr \cdot m^2)}{W/(nm \cdot sr \cdot m^2)}$	390 nm ≤ 波長 < 420 nm 420 nm ≤ 波長 < 530 nm	2.8	% %
分光輻射 儀 報告簽署/	LR-6-Z, Optronic Laboratories/ 455-6-2	射儀校正程序 (文件編號: 07-3-91-0087)	2 2 2	$\frac{\mu W/(nm\cdot sr\cdot m^2)}{\mu W/(nm\cdot sr\cdot m^2)}$	2 2	$\frac{W/(nm \cdot sr \cdot m^2)}{W/(nm \cdot sr \cdot m^2)}$	390 nm ≤ 波長 < 420 nm 420 nm ≤ 波長 < 530 nm	2.8	% %
分光輻射 儀 報告簽署/ KG3022	LR-6-Z, Optronic Laboratories/ 455-6-2 人: 吳貴能; 莊宜蓁; KONICA MINOLTA/	射儀校正程序 (文件編號: 07-3-91-0087) 陳政憲	2 2 2	$\frac{\mu W/ (nm \cdot sr \cdot m^2)}{\mu W/ (nm \cdot sr \cdot m^2)}$ $\frac{\mu W/ (nm \cdot sr \cdot m^2)}{\mu W/ (nm \cdot sr \cdot m^2)}$	2 2 2	W/ (nm·sr·m²) W/ (nm·sr·m²) W/ (nm·sr·m²)	390 nm ≦ 波長 < 420 nm 420 nm ≦ 波長 < 530 nm 530 nm ≦ 波長 ≦ 780 nm	2.8 1.9 1.4	% % %
分光輻射 儀 報告簽署 <i>J</i> KG3022	LR-6-Z, Optronic Laboratories/ 455-6-2 人: 吳貴能; 莊宜蓁; KONICA	射儀校正程序 (文件編號: 07-3-91-0087) 陳政憲 自訂分光輻射系統分光輻	2 2 2	$\begin{array}{c} \mu W/\ (nm\cdot sr\cdot m^2) \\ \mu W/\ (nm\cdot sr\cdot m^2) \\ \mu W/\ (nm\cdot sr\cdot m^2) \\ \end{array}$ $\mu W/\ (nm\cdot sr\cdot m^2)$	2 2 2	W/ (nm·sr·m²) W/ (nm·sr·m²) W/ (nm·sr·m²) W/ (nm·sr·m²)	390 nm ≦ 波長 < 420 nm 420 nm ≦ 波長 < 530 nm 530 nm ≦ 波長 ≦ 780 nm 380 nm ≦ 波長 < 390 nm	2.8 1.9 1.4 3.8	% % %

最高 工作標準件	校正方法		校正	-範圍		量測條件不確		
廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單化
Gooch & Housego/	自訂分光輻射系	0.01	mW/ (m²·nm)	240	mW/ (m²·nm)	250 nm ≦ 波長 ≦ 260 nm	3.2	%
OL-FEL-U, GE/	統分光輻射照度	0.01	mW/ (m²·nm)	240	mW/ (m²·nm)	270 nm ≦ 波長 ≦ 510 nm	2.3	%
EHD 500	標準燈校正程序	0.01	mW/ (m²·nm)	240	mW/ (m²·nm)	520 nm ≦ 波長 ≦ 1100 nm	1.2	%
	(文件編號:	0.01	mW/ (m²·nm)	240	$mW/(m^2 \cdot nm)$	1110 nm ≦ 波長 ≦ 1400 nm	1.5	%
	07-3-80-0004)	0.01	mW/ (m²·nm)	240	mW/ (m²·nm)	1410 nm ≦ 波長 ≦ 2310 nm	2.0	%
		0.01	mW/ (m²·nm)	240	$mW/(m^2 \cdot nm)$	2320 nm ≦ 波長 ≦ 2480 nm	2.6	%
		0.01	mW/ (m²·nm)	240	mW/ (m²·nm)	2490 nm ≦ 波長 ≦ 2500 nm	4.7	%
LR-6-Z, Optronic Laboratories/		5	cd/m²	50000	cd/m²		1.4	%
: 吳貴能; 莊宜蓁;	陳政憲							
CS-2000	自訂分光輻射系 統分光輻射亮度 標準燈校正程序 (文件編號: 07-3-89-0074)	5	cd/m²	50000	cd/m²		1.6	%
: 3	廠牌/型號 Gooch & Housego/DL-FEL-U, GE/EHD 500 : 吳貴能; 莊宜蓁; Sphere Optics/LR-6-Z, Optronic aboratories/.55-6-2 : 吳貴能; 莊宜蓁; KONICA MINOLTA/CS-2000	工作標準件 文件名稱 /編號 Gooch & Housego/ DL-FEL-U, GE/ EHD 500 自訂分光輻射系 統分光輻射照度 標準燈校正程序 (文件編號: 07-3-80-0004) EHD 500 自訂分光輻射系 統分光輻射系 近程序 (文件編號: 07-3-91-0087) EB 55-6-2 (文件編號: 07-3-91-0087) EB 55-6-2 自訂分光輻射系 (文件編號: 07-3-91-0087) EB 55-6-2 自訂分光輻射系 (文件編號: 07-3-91-0087) EB 55-6-2 自訂分光輻射系 統分光輻射系 統分光輻射亮度 標準燈校正程序 (文件編號: (文件編號:	工作標準件 文件名稱 /編號 最小 Gooch & Housego/ DL-FEL-U, GE/ EHD 500 自訂分光輻射照度 (2件編號: 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	工作標準件 文件名稱 /編號 最小 範圍 單位 Gooch & Housego/ DL-FEL-U, GE/ SHD 500 自訂分光輻射照度 (文件編號: 0.01 mW/ (m²·nm) 0.01	工作標準件 文件名稱 /編號 最小 範圍 最大 範圍 Gooch & Housego/ DL-FEL-U, GE/ EHD 500 自訂分光輻射照度 統分光輻射照度 標準燈校正程序 (文件編號: 07-3-80-0004) 0.01 mW/ (m²·nm) 240 EHD 500 0.01 mW/ (m²·nm) 240 0.01 mW/ (m²·nm) 240 0.01 mW/ (m²·nm) 240 0.9here Optics/ AR-6-Z, Optronic aboratories/ 55-6-2 自訂分光輻射系 統分光輻射系 (文件編號: 07-3-91-0087) 5 cd/m² 50000 会別ONICA MINOLTA/ CS-2000 自訂分光輻射系 統分光輻射系度標準燈校正程序 (文件編號: 07-4-2000) 5 cd/m² 50000	工作標準件 文件名稱 /編號 最小 範圍 單位 最大 範圍 單位 Gooch & Housego/ DL-FEL-U, GE/ EHD 500 自司分光輻射照度 统分光輻射照度 (文件編號: 0.01 mW/(m²·nm) 240 mW/(m²·nm) 0.01 mW/(m²·nm) 240 mW/(m²·nm) 0.01 mW/(m²·nm) 240 mW/(m²·nm) 0.01 mW/(m²·nm) 0.01 mW/(m²·nm) 240 mW/(m²·nm) 0.01 mW/(m²·nm)	工作標準件 廠牌/型號 文件名稱 /總號 最小 範圍 單位 範圍 最大 範圍 單位 範囲 最大 範圍 單位 範囲 最大 範囲 單位 範囲 設明 Ooch & Housego/ M-PEL-U, GE/ EHD 500 自司分光輻射照度 標準燈枝正程序 (文件編號: 07-3-80-0004) 0.01 mW/(m²-nm) 0.01 mW/(m²-nm) 240 mW/(m²-nm) 0.01 mW/(m²-nm) 270 nm ≤ 波長 ≤ 510 nm mW/(m²-nm) 270 nm ≤ 波長 ≤ 510 nm mW/(m²-nm) 240 mW/(m²-nm) 2490 nm ≤ 波長 ≤ 2500 nm E 異貴能; 莊宜蓁; 陳政憲 自司分光輻射系度 (文件編號: 07-3-91-0087) 5 cd/m² 50000 cd/m² 50000 cd/m² KONICA MINOLTA/ SS-2000 自司分光輻射系度 (文件編號: 5 cd/m² 50000 cd/m² 50000 cd/m²	工作標準件 廠牌/型號 文件名稱 /編號 最小 範圍 單位 範圍 最大 範圍 單位 範圍 數值 數值 JOL-FEL-U, GE/ SHD 500 自 寸分光輻射系 (文件編號: 07-3-80-0004) 0.01 mW/(m²·nm) 0.01 mW/(m²·nm) 240 mW/(m²·nm) 240 mW/(m²·nm) 250 nm ≤ 波長 ≤ 260 nm 270 nm ≤ 波長 ≤ 510 nm 2.3 240 mW/(m²·nm) 2.3 250 nm ≤ 波長 ≤ 1100 nm 1.2 240 mW/(m²·nm) 1.2 250 nm ≤ 波長 ≤ 1100 nm 1.2 240 mW/(m²·nm) 1.2 1110 nm 240 mW/(m²·nm) 1.5 240 nm 240 mW/(m²·nm) 2.3 248 nm 250

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最不確	
校正件	廠牌/型號	文件名稱 /編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KG3025	NPL FEL/	自訂分光輻射通	700	lm	7000	lm	全光通量	1.1	%
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BN-9101-482	量標準燈校正程	0.5	mW/nm	150	mW/nm	350 nm ≤ 波長 < 370 nm, 分光輻射通量	2.7	%
通量標準		序(文件編號:	0.5	mW/nm	150	mW/nm		1.5	%
燈		07-3-A1-0073)	0.5	111 VV / 11111	130	111 VV / 11111	370 nm ≤ 波長 ≤ 830 nm, 分光輻射通量	1.5	70
報告簽署人	人: 吳貴能; 莊宜蓁;	陳政憲							
	Ta ==	1							T
	OSRAM/50W/	自訂全光通量系	1	lm	20000	lm		1.0	%
, o o = 111	NLR01	統光通量標準燈							
準燈		校正程序-3 m 積							
		分球(文件編號:							
加山林田	口中儿 北北	07-3-A5-0128)							
	C: 吳貴能; 莊宜蓁;								
•	300 新竹市大學路								T
	OSRAM/50W/	自訂發光二極體	0.04	lm	800	lm	紅光	3.4	%
發光二極	NLR01	全光通量校正程	0.04	lm	800	lm	綠光	3.4	%
體		序(文件編號:	0.04	lm	800	lm	藍光	3.4	%
		07-3-95-0107)	0.04	lm	800	lm	白光	3.4	%
報告簽署ノ	人: 吳貴能; 莊宜蓁;	陳政憲							
校正場地:	300 新竹市大學路	30 號							
	CSIR AR-1100	自訂絕對輻射系	50	μW	150	mW	光功率計	4.1	%
光功率計,		統光輻射校正程	50	μW	150	mW	光源	4.1	%
光源		序(文件編號:							
		07-3-85-0069)							
報告簽署人	人: 吳貴能; 莊宜蓁;	陳政憲							

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最不確	
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KG3026	CSIR AR-1100	自訂絕對輻射系	6	μW	100	mW	波長: 300 nm to 9000 nm, 輻射功率可見光	0.28	%
光偵測器,		統校正程序							
光功率計		(文件編號:	6	μW	100	mW	波長: 300 nm to 9000 nm, 輻射功率其他波段	0.52	%
		07-3-83-0023)							
報告簽署人	人: 吳貴能; 莊宜蓁;	陳政憲							
KG3026	L1/CRYORAD/	自訂低溫絕對輻	10	nW	1.0	mW	波長: 200 nm to 5000 nm, 雷射	0.028	%
雷射,	900109	射系統光輻射功							
分光儀		率校正程序	10	nW	1.0	mW	波長: 200 nm to 5000 nm, 分光儀單色光	0.16	%
		(文件編號:	10	11 44	1.0	111 **	及表. 200 mm to 3000 mm, 为允俶平已允	0.10	/0
		07-3-93-0196)			\triangle				
報告簽署ノ	人: 吳貴能; 莊宜蓁;	陳政憲							
KG3027	BYK GARDNER	自訂全光通量系	10	GU	100	GU	高光澤 (20°)	0.7	GU
光澤板	(20, 60, 85)	統光澤度標準板	10	GU	100	GU	高光澤 (60°)	0.6	GU
		校正程序	10	GU	100	GU	高光澤 (85°)	0.5	GU
		权止程序	10						
		(文件編號:	10	GU	100	GU	中光澤 (20°)	1.2	GU
					100 100	GU GU	中光澤 (20°) 中光澤 (60°)	1.2 0.9	GU GU

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最不確	小定度
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KG3099	Haze system O08	自訂穿透霧度標準片校正程序	0	%	< 2	%	ASTM D 1003, JIS K 7105	0.05	%
穿透霧度		(文件編號: 07-3-96-0035)	2	%	< 7	%	ASTM D 1003, JIS K 7105	0.13	%
片		(= 1) -	7	%	< 15	%	ASTM D 1003, JIS K 7105	0.19	%
			15	%	< 25	%	ASTM D 1003, JIS K 7105	0.39	%
			25	%	< 35	%	ASTM D 1003, JIS K 7105	0.53	%
			35	%	< 40	%	ASTM D 1003, JIS K 7105	0.64	%
			0	%	< 2	%	ISO 13468, JIS K 7361	0.16	%
			2	%	< 7	%	ISO 13468, JIS K 7361	0.23	%
			7	%	< 15	%	ISO 13468, JIS K 7361	0.27	%
			15	%	< 25	%	ISO 13468, JIS K 7361	0.41	%
			25	%	< 35	%	ISO 13468, JIS K 7361	0.58	%
			35	%	< 40	%	ISO 13468, JIS K 7361	0.64	%
			0	%	< 2	%	ISO 14782, JIS K 7136	0.04	%
			2	%	< 7	%	ISO 14782, JIS K 7136	0.13	%
			7	%	< 15	%	ISO 14782, JIS K 7136	0.19	%
			15	%	< 25	%	ISO 14782, JIS K 7136	0.36	%
			25	%	< 35	%	ISO 14782, JIS K 7136	0.52	%
			35	%	< 40	%	ISO 14782, JIS K 7136	0.59	%
報告簽署ノ	、 吳貴能; 莊宜蓁;	陳政憲							
	OSRAM/	自訂發光二極體分光輻射光譜校正程序	380	nm	780	nm	主波長	1.1	nm
發光二極 體	64743 1000W/ IW08	(文件編號: 07-3-95-0130)							
	L: 吳貴能; 莊宜蓁;	庙北宝							
义止场地:	300 新竹市大學路	30							

項目代碼/	最高 工作標準件	校正方法		校正	範圍		量測條件	最小不確定	
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KG3099	OSRAM/	自訂發光二極體分光輻射光譜校正程序	410	nm	< 422	nm	分光輻射光譜,白光	23	%
發光二極體	64743 1000W/	(文件編號: 07-3-95-0130)	422	nm	< 445	nm	分光輻射光譜, 白光	6.3	%
	IW08		445	nm	< 479	nm	分光輻射光譜, 白光	4.6	%
			479	nm	< 489	nm	分光輻射光譜,白光	4.6	%
			489	nm	< 606	nm	分光輻射光譜,白光	4.4	%
			606	nm	< 649	nm	分光輻射光譜,白光	4.4	%
			649	nm	< 664	nm	分光輻射光譜,白光	5.4	%
			664	nm	< 714	nm	分光輻射光譜,白光	7.8	%
			714	nm	< 772	nm	分光輻射光譜,白光	22	%
			772	nm	780	nm	分光輻射光譜,白光	39	%
			565	nm	< 593	nm	分光輻射光譜,紅光	25	%
			593	nm	< 608	nm	分光輻射光譜,紅光	8.2	%
			608	nm	< 635	nm	分光輻射光譜,紅光	7.9	%
			635	nm	< 651	nm	分光輻射光譜,紅光	8.5	%
			651	nm	< 671	nm	分光輻射光譜,紅光	11	%
			671	nm	675	nm	分光輻射光譜, 紅光	15	%

報告簽署人: 吳貴能; 莊宜蓁; 陳政憲

校正場地: 300 新竹市大學路 30 號

項目代碼/	最高 工作標準件	校正方法		校正範圍量測條件					
校正件	廠牌/型號	文件名稱/編號	最小範圍	單位	最大範圍	單位	說明	數值	單位
KG3099	CSIR AR-1100	自訂發光二極體平	10	mcd	10000	mcd	平均光強度, 紅光, 峰波長 (633 ± 30) nm	1.7	%
發光二極體		均光強度校正程序	10	mcd	10000	mcd	平均光強度, 綠光, 峰波長 (520 ± 30) nm	1.7	%
		(文件編號:	10	mcd	10000	mcd	平均光強度, 藍光, 峰波長 (460 ± 30) nm	1.7	%
		07-3-95-0108)	10	mcd	10000	mcd	平均光強度, 白光	1.7	%

報告簽署人: 吳貴能; 莊宜蓁; 陳政憲

校正場地: 300 新竹市大學路 30 號

註: 最小不確定度係以約95%信賴水準之擴充不確定度表示(以下空白)